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Preface

After several years of discussion with industry about aviation risk man-
agement and the operational and economic impact of security mea-
sures, the Transportation Security Administration (TSA) concluded in 
late 2005 that it required a “revolutionary” approach to understand-
ing air transportation risk and the net reductions in risk associated 
with individual countermeasures. In July 2007, Boeing entered into 
an agreement with TSA to develop and operate the Risk Management 
Analysis Tool (RMAT) and associated risk-management processes. 
These were designed to model and explain the complex interactions 
between security providers and systems and adversaries hoping to 
attack the commercial air transportation system. 

RMAT is used by TSA to estimate the terrorism risk-reduction 
benefits attributable to new and existing security programs, technolo-
gies, and procedures. For instance, RMAT has been used to estimate 
the risk-reduction benefits attributable to behavior detection officers, 
and Advanced Imaging Technology (such as full-body scanners), for 
purposes of supporting cost-benefit analyses of these programs. 

Whereas RMAT has clearly benefitted from the combined exper-
tise and investments of Boeing, TSA, and other industry and govern-
mental stakeholders who have participated in a working group advis-
ing on RMAT development, the tool itself is sufficiently complex that 
it cannot rely on the transparency of its methods to support its face 
validity. 

Before relying on RMAT results for high-stakes resource manage-
ment and policy decisions, therefore, TSA leadership requested that the 
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RAND Corporation conduct an independent assessment of the valid-
ity of the RMAT terrorism risk model for these purposes. This report 
describes RAND’s approach to this assessment, its results, and recom-
mendations for how TSA and Boeing might further develop and work 
with RMAT in the future. 

This research was sponsored by the Risk and Capabilities Analysis 
Design office of TSA and was conducted within the RAND Homeland 
Security and Defense Center, a joint center of RAND Infrastructure, 
Safety, and Environment and the RAND National Defense Research 
Institute, a federally funded research and development center spon-
sored by the Office of the Secretary of Defense, the Joint Staff, the Uni-
fied Combatant Commands, the Navy, the Marine Corps, the defense 
agencies, and the defense Intelligence Community.

For more information on the RAND Homeland Security  
and Defense Center, and for additional published work on terrorism  
risk management, see http://www.rand.org/multi/homeland-security- 
and-defense.html. 

http://www.rand.org/multi/homeland-security-and-defense.html
http://www.rand.org/multi/homeland-security-and-defense.html
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Summary

To support policy and resource allocation decisions, the Depart-
ment of Homeland Security (DHS) and the Transportation Security 
Administration (TSA) have developed a suite of tools and processes for  
conducting risk assessments. One such tool is the Risk Management 
Analysis Tool (RMAT) developed by the Boeing Company and TSA 
in consultation with private sector and governmental members of a risk 
management working group. In December 2010, TSA asked RAND 
to evaluate whether RMAT provides results that are valid for TSA’s 
risk-assessment needs. This report describes RAND’s approach to this 
assessment and our findings.

RMAT simulates terrorist behavior and success in attacking vul-
nerabilities in the domestic commercial air transportation system. In 
doing so, it draws on estimates of terrorist resources, capabilities, prefer-
ences, decision processes, intelligence collection, and operational plan-
ning. It describes how the layers of security protecting the air transpor-
tation system are likely to perform in the face of a range of more than 
60 types of attack. It draws on detailed blast and other physical mod-
eling to understand the damage produced by different weapons and 
attacks and calculates the direct and indirect economic consequences 
of that damage. As such, the tool is designed to provide vital informa-
tion that can help TSA understand the risks to which the entire air 
transportation system is exposed and develop ways to improve it. 

RAND’s approach to validating RMAT required first establish-
ing TSA’s intended uses and requirements for risk assessment and then 
evaluating which of those requirements RMAT can satisfy. We have 
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not validated RMAT against a set of original requirements for the 
system, because RMAT has evolved over time without such a guiding 
set of requirements. Instead, therefore, we evaluate TSA’s current and 
broad risk-assessment requirements that RMAT can validly support. 

We divided the validation effort into four substantive research 
questions: 

1. Are the adversary behavior and air transportation system con-
ceptual models valid, and are the data used to support them 
adequate? (Chapters Two and Three) 

2. Are the sources and methods for populating the RMAT model 
with data sufficient to ensure their validity? (Chapter Four)

3. Does the RMAT code, as implemented, perform in the way it 
was designed to? (Chapter Five)

4. Can risk estimates from RMAT be used in the ways TSA 
intends? (Chapter Six)

These validation efforts considered diverse sources of evidence, 
including published scientific literature, elicited judgments from sub-
ject matter experts, considerations of logic and reasonableness, histor-
ical evidence, and quantitative empirical analysis of RMAT and its 
outputs. Each of these chapters includes detailed observations about 
RMAT strengths and weaknesses and concludes with a set of recom-
mendations for further developing RMAT. In this Summary, we high-
light only the main findings from the study. 

RMAT Suitability for TSA Risk Assessment

RMAT is built around two innovative conceptual models: an adversary 
model that simulates adversary efforts to select, plan for, and execute 
attacks; and a defender model that simulates how the air transportation 
system will react to each attack. 

As one of the first general theories of terrorism designed to account 
for adversary resource constraints, intelligence collection, targeting, 
utility functions, and operations, the RMAT adversary model repre-
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sents a potentially important contribution to the terrorism research 
community. Nevertheless, it also necessarily relies on assumptions that 
are speculative and requires data as inputs that are subject to great 
uncertainty. As such, we do not believe that the adversary model should 
be regarded as likely to accurately anticipate terrorist behavior. We do 
think that it is useful analytically, however, such as for exploring how 
plausible characteristics and choices of adversaries might affect risk, 
refining analysts’ understanding of the complexity of terrorist behav-
ior, or helping to focus intelligence collection activities on features of 
terrorist behavior that RMAT identifies as important. Such uses are 
valuable. Just as with other terrorism risk models we have examined, 
however, these uses do not include prediction of the most likely actual 
adversary strategies. 

TSA and Boeing recognized the limitations of the adversary 
model and have adopted strategies for working with RMAT that 
reduce reliance on it. RMAT can be run in such a way that adversar-
ies are forced to attempt specific attacks, thereby circumventing some 
more speculative parts of the model that simulate adversary preferences 
and choice behavior. Even in this mode, however, the adversary must 
construct a plan, gather intelligence and resources, conduct dry runs, 
and perform other activities that affect the likelihood of success. Thus, 
results continue to depend on adversary modeling that is subject to 
major assumptions and important sources of uncertainty. The assump-
tions may be reasonable for some adversaries, in which case the results 
might be quite good. For others, the results may be quite poor. As such, 
the model results cannot be assumed to reliably anticipate system ter-
rorism risks. 

The defender model, which characterizes the U.S. domestic air 
transportation security system, is a particular strength of RMAT. The 
current abstract air transportation system modeled in RMAT appears 
to capture the key features relevant to security at most airports. If we 
have good information about an adversary’s capabilities and intentions, 
the RMAT defender model can provide credible and useful estimates 
of the likelihood of detecting and interdicting the adversary. Moreover, 
modification of the generalized airport configuration is straightfor-
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ward, so to the extent they fall within the scope of the RMAT “world,” 
new places, processes, and vulnerabilities can be incorporated. 

There are some gaps in the defender model that TSA and Boeing 
should consider remedying, as these limit its scope and validity and 
could introduce unwanted biases in RMAT results. Chief among these 
recommended improvements is broadening the scope of the domes-
tic air transportation system to include its interfaces with non-U.S. 
airports and inbound foreign flights. Additional improvements to 
this portion of the model may include expanding the range of secu-
rity threats considered under RMAT, expanding the range of attack 
pathways available to attackers, and inclusion of off-airport freight pro-
cessing, catering, general aviation, mass transit, air traffic control, and 
booking information systems. Some of these recommended changes 
have already been planned by the RMAT development team. 

Both the adversary and the defender models place heavy demands 
on the identification, validation, and maintenance of the roughly 
4,300 input values quantifying aspects of airports, security operations, 
terrorists, attack outcomes, and their valuations. To fulfill model data 
requirements, Boeing and TSA have undertaken repeated data collec-
tion efforts that have relied on elicitations from subject matter experts; 
assessments of technical, red-teaming, and scientific data; review of 
TSA policies and procedures; and other data sources. 

In reviewing a sample of RMAT data inputs, the RAND team 
was able to validate the reasonableness, if not necessarily the real-world 
correctness, for more than half of the parameter values either on logi-
cal grounds (e.g., nonmetallic knives are not explosive and do not con-
tain any metal) or by confirming values through literature searches 
or consultation with subject matter experts. Nevertheless, some values 
appeared wrong to us, and others required estimates that call for infor-
mation that either does not exist or is subject to such profound uncer-
tainty that we judged they should not be estimated as point values 
but, rather, explicitly treated as ranges and sources of deep uncertainty 
affecting RMAT estimates. Boeing considers the specific parameters 
used in the model to be proprietary, so we are prohibited from illus-
trating this point with examples. Suffice it to say, however, that por-
tions of the model attempt to parameterize quite specific features of 
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terrorists’ decision criteria, including specification of their risk toler-
ance, preferences, knowledge, and learning. Such RMAT variables are 
important in the model but require precision beyond what intelligence 
or academic research can credibly provide. Estimating ranges of values 
is often more plausible, but understanding the implications of these 
uncertainties on model results should be a priority in future work with 
the model. 

RMAT uses subject matter experts as sources for roughly two-
thirds of its input data. After reviewing TSA and Boeing methods for 
eliciting subject matter expert judgments, we offer several suggestions 
for improving the elicitation process and results. In addition, we recom-
mend relying less on subject matter expert judgments when scientific 
or empirical literature is available as relevant input data and expanding 
the pool of experts used to provide judgments on RMAT conceptual 
models and parameter values. 

To produce valid and useful results, RMAT requires more than 
just good conceptual models and valid input data; it needs code that 
faithfully characterizes the conceptual models and change manage-
ment processes that help ensure that the code remains faithful through 
periodic modifications necessary for new case studies of risk, when 
improvements are made to the conceptual model, or when coding 
errors are corrected. To evaluate the RMAT software, we ran third-
party software quality diagnostic tools on its code, we conducted sensi-
tivity analysis experiments to establish whether input and output vari-
ables are associated in predictable ways, and we evaluated the change 
management processes used to maintain the software. 

RMAT was originally developed as a prototype, and it has evolved 
continuously to fit new uses and requirements. The result is a complex 
program with less organization and efficiency than would be expected 
of a production model. Given the rapid pace of progress and changing 
requirements, it is easy to understand the software’s current state, but it 
implies significant challenges for expanding, revising, debugging, test-
ing, and managing the code—all of which threaten its ongoing reli-
ability and validity. Boeing is aware of these code issues, of course, and 
reports that it is in the process of improving the RMAT source code. 
Our point here is not to criticize, because such complex and ambitious 
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undertakings often exhibit these types of problems along the way, but 
to point out that moving forward to something stable, solid, and adapt-
able will be important but challenging.

Our sensitivity tests found that most, but not all, relationships 
between inputs and outputs are in the expected direction. Moreover, 
several relationships we expected to find were not present, such as asso-
ciations between the probability of successfully entering the flight deck 
or the probability of air marshals being onboard and either the attrac-
tiveness or success of hijack attempts. We allowed the probability of 
federal air marshals being present on the hijacked aircraft to vary across 
a wide range, yet the model suggests that their presence or absence has 
no significant influence over hijack success rates—a result that is hard 
to understand. 

Of the variables that appear most often to have a significant influ-
ence on outcomes, many are those we consider to be difficult or impos-
sible to estimate with precision. These include judgments about how 
much perceived risk might color the decisions of current and future ter-
rorists or how large the maximum possible size of terrorist cells might 
be when considering known and unknown groups. 

These are all parameters that are subject to deep uncertainty and, 
no doubt, to wide variation across terrorist groups. Subject matter 
experts and intelligence analysts cannot credibly supply meaningful 
point estimates of these values. That these parameters also happen to 
explain a large portion of the variance in RMAT outcomes suggests 
the need for caution when interpreting model results based on rough 
estimates for these uncertain parameters. 

Finally, our review finds that RMAT is capable of supporting 
several of TSA’s risk-assessment intended uses but that its design is 
not always conducive to these purposes. TSA must make high-stakes 
resource allocation decisions designed to counter threats that are not 
well known, that are continuously evolving, and that may intelligently 
adapt to circumvent our security measures. This is a complex problem 
and one for which there may not be one best answer. 
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A recurring theme in our review is that it is a serious error to 
imagine that the correct values of all the parameters of a good model 
such as RMAT can be established. The analytic endeavor should be 
conceived differently so as to acknowledge the need for exploratory 
analysis under uncertainty. Because future terrorism risks are subject 
to sources of deep uncertainty, TSA should not seek security solutions 
that are optimized for a set of plausible and carefully collected input 
values. Instead, it should search for solutions that perform well across a 
range of input values selected to span the space of plausible future con-
ditions. This type of exploratory analysis is invaluable for identifying 
robust solutions and understanding the conditions under which differ-
ent solutions might be expected to perform well. 

TSA has some procedures in place to explore the implications of 
key uncertainties. For instance, it uses sensitivity analysis methods to 
consider how risk reduction might vary with different RMAT assump-
tions about attacker capabilities, the expected number of attacks per 
year, or expectable improvements in technology. This approach pro-
vides insights into the robustness of the RMAT results to differing 
assumptions and represents an important advance in TSA approaches 
to understanding the risks it is charged with managing. But this 
approach still assumes that many other uncertain variables are esti-
mated accurately. 

A better approach, we believe, would use a simplified low- 
resolution terrorism risk model abstracted from RMAT to highlight 
the key sources of uncertainty affecting outcomes and then use explor-
atory analysis to evaluate the space of possible future outcomes using 
a spanning set of test cases or parameter values for all important and 
uncertain parameter values and assumptions. A similar approach is 
now reflected in Department of Defense planning (as in the 2009 
Quadrennial Defense Review). In this report, we discuss how insights 
and parameter estimates from the RMAT might be used to support 
low-resolution models that could provide TSA with transparent analy-
ses of the effects of deep uncertainties on risk and the decisions TSA 
must make. 
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Conclusions

RMAT has proven to be of great value to TSA in driving a more 
sophisticated understanding of terrorism risks to the air transportation 
system. Indeed, at the time RMAT was begun, TSA’s approach to risk 
analysis and risk management was rudimentary. The process of devel-
oping RMAT led TSA to increasingly sophisticated understandings of 
the nature of terrorism threats, vulnerabilities, and consequences, as 
demonstrated in its current risk doctrine.

This is an example of one principal value that high-resolution 
models such as RMAT offer. Specifically, they can be invaluable for 
facilitating understanding of important phenomena and for recording, 
structuring, and conveying information that is complex and not well 
understood. Such models can become essential textbooks for training 
analysts and leaders to think more clearly and productively about com-
plex phenomena and for driving developments in our theory and con-
ceptual models for these phenomena. RMAT is clearly well suited for 
such purposes. 

In addition, we find that RMAT fully or partially satisfies 16 of 
TSA’s 19 high- and medium-priority risk-assessment requirements, 
making it a valuable addition to TSA’s collection of analytic tools and 
methods. 

As with all other terrorism risk models, however, it is not well 
suited for revealing how the future is likely to unfold. Even if the con-
ceptual models on which RMAT is built were sound and comprehen-
sive, the input data requirements exceed what subject matter experts or 
science can estimate with precision, and the imprecision of those esti-
mates is subject to unknown sources and ranges of error. That said, we 
recommend that TSA make RMAT a component of a new exploratory 
and multiresolution modeling approach for supporting resource alloca-
tion and high-level policy questions. 
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CHAPTER ONE

Introduction

In establishing the Department of Homeland Security (DHS) in 2002, 
Congress directed DHS to develop risk-management principles for 
protecting critical infrastructure sectors such as transportation. This 
requirement was elaborated by Homeland Security Presidential Direc-
tive 7, the National Infrastructure Protection Plan, and other legisla-
tion and policies. These highlighted the importance of developing reli-
able and valid assessments of security risks that account systematically 
for the threats, vulnerabilities, and consequences to which transporta-
tion systems and other critical infrastructure are exposed. 

Early DHS and Transportation Security Administration (TSA) 
risk-analysis efforts revealed the complexity of critical infrastructure 
risks when threats involve intelligent adversaries who may adapt to 
security countermeasures and whose number, location, and intentions 
are poorly known. Tools such as the Risk Analysis and Management 
for Critical Asset Protection and TSA’s National Transportation Sector 
Risk Analysis were soon abandoned because of the challenges of accu-
rately measuring key inputs, such as the likelihoods of different attack 
scenarios and the expected direct and indirect consequences of success-
ful attacks.

These challenges did not relieve TSA or the department of its 
obligations to perform credible risk assessments. Indeed, the Govern-
ment Accountability Office (GAO), Office of Management and Budget 
(OMB), and Congress have continued to press the secretary and the 
administrator of TSA to justify security priorities in a rational, com-
prehensive, and transparent way, noting that the alternative of basing 
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decisions chiefly on intelligence assessment of threats is inadequate for 
ensuring cost-effective security solutions (GAO, 2009). 

DHS and TSA have invested in increasingly complex risk models 
designed, in some cases, to predict terrorist decisionmaking and behav-
ior from first principles, to perform detailed blast and other effect mod-
eling to understand the kinetic effects of different weapons, and to 
construct sophisticated economic models of the cascading effects of 
terrorist attacks on local, regional, and national economies. 

Inevitably, the added complexity of these newer risk models makes 
them less transparent than earlier, low-resolution models that worked 
from rough aggregate estimates of threats, vulnerabilities, and conse-
quences. With the loss of transparency, important questions have been 
raised about the validity of current terrorism risk models and whether 
they are sufficiently accurate to be used in homeland security planning. 
For instance, in its 2010 report on risk modeling at DHS, a National 
Academy of Sciences panel reported that “with the exception of risk 
analysis for natural disaster preparedness, the committee did not find 
any DHS risk-analysis capabilities and methods that are yet adequate 
for supporting DHS decision making, because their validity and reli-
ability are untested” (National Research Council [NRC], 2010, p. 2). 
They went on to recommend that “DHS should strengthen its scientific 
practices, such as documentation, validation, and peer review by tech-
nical experts external to DHS. This strengthening of its practices will 
also contribute greatly to the transparency of DHS’s risk modeling and 
analysis” (p. 3).1

In the spirit of this recommendation, TSA asked the RAND 
Corporation to perform an independent validation of the Risk Man-
agement and Analysis Tool (RMAT), a simulation model of terrorism 
risks faced by the commercial domestic air transportation system. 

This report describes our assessment of RMAT assumptions, 
input data, and model performance but does so in a way designed 

1 As discussed later in this report, RAND’s view is that the NRC recommendations over-
stressed “validation” and greatly underemphasized the need to characterize uncertainties 
and build uncertainty into analysis. Achieving high “accuracy” is sometimes impossible, but 
good analysis under uncertainty is feasible.
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to protect sensitive information about true air transportation vulner-
abilities. RMAT assumptions do not represent standard TSA assump-
tions, and the inputs we used to test RMAT performance were not the 
security-sensitive inputs used by TSA when using RMAT to evalu-
ate system security. That is, the assumptions, strengths, weaknesses, and 
results of RMAT described in this report should not be interpreted to accu-
rately reflect TSA’s wider risk-assessment assumptions and estimates, as 
TSA decisionmakers draw on a range of risk-assessment methods and infor-
mation in addition to RMAT. 

RMAT and Its Current Use

After several years of discussion with industry about aviation risk man-
agement and the operational and economic impact of security mea-
sures, TSA concluded in late 2005 that it required a “revolutionary” 
approach to understanding air transportation risk and the net reduc-
tions in risk associated with individual countermeasures. TSA, industry 
and government stakeholders in aviation security, and Boeing jointly 
developed a functional analysis of requirements for such a model in 
February 2006, which described the importance of understanding how 
adversaries and defenders interact. 

Boeing began development of the risk-modeling prototype tool 
that RMAT evolved from in 2004 and continues to own and operate 
it at no cost to the U.S. government. Boeing representatives explain 
the company’s investment in the model as reflecting its concern with 
ensuring the safety and prosperity of the aviation system, on which its 
success as a company depends. Boeing representatives describe the 9/11 
attack consequences on the aviation system as damaging to the com-
pany, accounting for staggering losses in anticipated sales. 

Boeing has worked closely with TSA and a risk management 
working group, consisting of government and industry representatives, 
to specify the threats and vulnerabilities represented in the model; to 
collect critical input values from TSA subject matter experts; to accu-
rately depict TSA and airport operations, security procedures, and 
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equipment performance; and to define case studies that could be ana-
lyzed with RMAT that would benefit TSA decisionmaking. 

The first production run of RMAT using classified servers and 
input data occurred in 2008. Since then, the model and many of its 
parameters have continued to be developed and refined. Personnel from 
TSA’s Risk Analysis and Capabilities Design (RACD) meet monthly 
with Boeing RMAT staff, developing countermeasure case studies to 
understand the risk reductions associated with, for instance, Advanced 
Imaging Technology (AIT), Explosives Trace Detection Systems 
(ETDS), behavior detection officers (BDOs), and federal air marshals.

The RMAT program is now roughly 60,000 lines of Visual Basic 
code, with over 4,000 user-modifiable parameters. The model attempts 
to describe terrorist preferences, capabilities, operational planning, 
attacks, likelihoods of attack success, and the consequences of success-
ful attacks in the context of a realistic domestic commercial air trans-
portation system equipped with more than two dozen separate security 
countermeasures. 

Boeing describes RMAT as an agent-based model, in which an 
adversary refines an attack plan using open source information about 
the air transportation system and by sending “red agents” on recon-
naissance missions through a representative airport. The RMAT air-
port is configured to include the places, activities, and security systems 
relevant to air transportation security and found at most U.S. airports, 
including, for instance, curbside check-in locations, checked baggage–
handling systems, passenger checkpoints and associated detection sys-
tems, employees, access points, etc. As red agents on reconnaissance 
missions explore this system, they learn of the existence of security 
systems and refine estimates of the systems’performance. 

The adversary’s goal is to maximize expected consequences from 
a selected attack. It uses reconnaissance to select which among 67 can-
didate attacks (or weapon-target pairings) offers the most attractive 
option based on several presumed preferences. The adversary also con-
siders the possibility of mounting multiple “parallel attacks” or inde-
pendent attacks using identical weapon-target pairs but executed by 
separate teams of red agents. Parallel attacks can greatly increase the 
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expected consequences of attacks but incur more risk and require more 
resources.

After selecting the attack type and number of parallel attacks, 
the adversary develops an attack plan that involves acquiring needed 
resources from a list of resource types that Boeing considers propri-
etary. The adversary selects an attack pathway (a route through or 
around the airport) and might plan a “dry run” to learn more about 
the security systems that red agents will face when executing the real 
attack. Finally, the attack is executed with damage from multiple pos-
sible outcomes calculated. 

Because RMAT is a Monte Carlo simulation, RMAT results can 
differ each time the model is run, even if input parameters are not 
changed. Therefore, to provide stable estimates of adversary success 
rates, the attractiveness of different weapon-target pairings, and the 
expected losses to the defender, the results of 425 RMAT runs with a 
single set of input values are typically averaged. 

To understand the possible benefits of new security countermea-
sures (e.g., new instruments, improved processes, or personnel improve-
ments), RMAT results with the new countermeasure are compared 
to results from a “baseline” RMAT run where inputs are selected to 
represent air transportation security as it currently exists. Comparing 
risk measures before and after introduction of the countermeasure pro-
vides estimates of the risk reduction if certain assumptions discussed in 
Chapter Six can be made. 

In recent practice, TSA has modified the analysis in two impor-
tant ways. First, instead of allowing the adversary to select what it 
believes to be the most attractive attack option, the adversary is forced 
to attempt each attack type, so that the probability of success and con-
sequences from each attack can be estimated. This modified procedure 
is appealing in that it provides comparative data on the risks of each 
key vulnerability, conditional on an attack. Moreover, it makes the 
analysis more robust by not depending on unreliable estimates of the 
absolute probability of attacks but therefore gives more weight than it 
“should” to attacks that are, in fact, quite unlikely. The dilemma on 
which way to tilt on such matters is a standard problem encountered in 
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policy analytic work of this type and is taken up in greater detail later 
in this report.

The second important modification is that TSA does not use 
RMAT estimates of expected defender consequences of attacks, favor-
ing instead estimates of attack consequences generated by another 
TSA risk-assessment process, the Transportation Sector Security Risk 
Assessment (TSSRA; TSA, 2010). Thus, TSA calculates independent 
estimates of expected losses by multiplying RMAT probabilities of suc-
cess for individual attacks by TSSRA estimates of the likely conse-
quences of those attacks. 

Validation of RMAT

RMAT belongs to a growing class of quantitative models that are com-
plex and cannot be directly tested by comparing model predictions to 
the outcome of events in the real world, because there are too few com-
parable terrorist attacks against the air transportation system to sup-
port statistical inferences about RMAT validity. Such models, like the 
large force-on-force military campaign models that have been used for 
decades, now include Department of Defense (DoD) efforts to model 
diplomatic, information, military, economic, financial, intelligence, 
and law enforcement responses to U.S. activities (e.g., Phillips, Cros-
scope, and Geddes, 2008; Body and Marston, 2011); and other terror-
ism risk models under development at the Department of Homeland 
Security and the Department of Defense (NRC, 2010; DoD, 2011). 

Validation of complex models has been a key concern of the 
military simulations community for over three decades. Since 1991, 
the Military Operations Research Society has organized a series of 
“SIMVAL” workshops on this topic, and other researchers, vendors, 
and organizations have also tried to clarify what it means for com-
plex simulations to be valid and under what circumstances they can be 
found to be so (e.g., Davis, 1992; Ritchie, 1992; Hodges and Dewar, 
1992; Dewar et al., 1996; Hartley, 1997; Bigelow and Davis, 2003; 
Pace, 2004; Chaturvedi et al., 2008; Hodges, 1991; Sargent, 2005). 
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Much of this work has been done by RAND, and so we draw heavily 
on our own work for this discussion.

DoD Instruction 5000.61 defines model validation as “the pro-
cess of determining the degree to which a model and its associated data 
are an accurate representation of the real world from the perspective of 
the intended use of the model.” In other words, a model may be valid 
for one set of uses but invalid for another. In addition, validity requires 
not just a model able to accurately describe the world, but input data 
required by the model must also be accurate. We know how to accu-
rately model an arrow’s flight path, for instance, but without input data 
on its speed and direction when it leaves the bow, our analysis will be 
invalid for predicting where it might land. If the model or the data it 
uses are not accurate, its results may be completely wrong, so the uses 
for which the model can credibly or validly support are narrowed. 

There are distinct validity criteria for different classes of uses 
(Dewar et al., 1996). At a high level of abstraction, we distinguish 
among three types of uses for simulation models such as RMAT,  
each requiring different validity criteria. Strongly predictive models  
are those designed to mirror reality with known precision. Models or 
analyses used to predict the future on such high-stakes questions as 
“will the astronauts be safe” or “will the multimillion dollar security 
program reduce risk” represent a class of uses with the most demanding 
validity requirements (Dewar et al., 1996). Predictive validity requires 
that both the model and its data accurately describe reality. 

As in the case of complex meteorological models, strongly predic-
tive models need not be consistently accurate, but validation requires 
understanding the distribution of prediction errors expected for the 
model (Dewar et al., 1996). Therefore, validation requires a strong basis 
in settled theory and, ultimately (even if in long-ago experiments), a 
sufficiently large empirical basis for judging the model’s reliability. This 
is a standard that terrorism risk models cannot hope to achieve. 

There is sufficient weather data to compare weather model results 
to hundreds of historical events with roughly comparable input con-
ditions. The same is not true for terrorism that has as many critically 
important input factors to consider but a comparative poverty of his-
torical evidence. Even in such cases as air transportation terrorism with 
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reasonably large numbers of historical events (e.g., see Chapter Two), 
changing security environments, terrorist groups, their objectives, and 
their tactics results in very few events that share enough similarity to 
provide a set of test cases for any particular set of model inputs. 

A second class of model uses involves understanding phenomena; 
refining theories and analysis strategies; supporting exploratory model-
ing (discussed more later); generating new insights; and recording, pre-
serving, and conveying knowledge. When the conceptual models on 
which these simulations are built are good, these models would be pre-
dictive if accurate input data were available. When conceptual founda-
tions are less well developed, these models can support theory devel-
opment for complex phenomena by promoting rigorous and detailed 
analysis of what is and is not known about the modeled phenomena. 

For instance, consider a model designed to account for how risks 
might shift to less well-defended targets after introduction of a secu-
rity countermeasure. The process of designing such a model can trig-
ger important conceptual developments concerning how adversary 
resources and capabilities affect such shifts, about adversaries’ utility 
functions (What range of objectives might they have? Do they pursue 
optimizing or satisficing outcomes?), about how imperfect informa-
tion or predispositional biases might affect target choice, etc. Work-
ing through such considerations can result in a new, possibly testable 
theory of adversary behavior. By identifying important factors that may 
not have been previously considered, such model development can help 
to inform analysts, decisionmakers, and the low-resolution models that 
can be used to rigorously evaluate policy options. Insights from these 
models can also help identify data requirements that can be used to 
focus intelligence collection or research efforts. We argue in this report 
that RMAT is well suited for these uses. 

A third class of uses involves informing decisionmaking. These 
models are specifically designed to address the major factors affecting 
decisions under consideration and are designed to help decisionmakers 
understand how important sources of uncertainty affect the likely out-
comes of their decisions. That is, these models are designed to support 
exploratory analysis (Davis, 2002). For instance, by exploring mod-
eled outcomes across the range of possible values on uncertain input 
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variables, it might be possible to establish the conditions under which 
a new security technology appears to be effective and those under 
which it does not. In contrast to strongly predictive uses, for which the 
most likely outcomes are calculated, exploratory analysis can be used 
to understand the range of possible outcomes given sources of deep 
uncertainty in either the input data or the conceptual model. Such 
analyses are particularly valuable for decisionmakers who cannot pre-
dict future conditions with accuracy, so wish to select policies that are 
robust across the range of plausible futures.

Validation of analytic methods for exploratory uses does not nec-
essarily require demonstrating predictive validity. Nevertheless, trust-
ing a model to correctly reveal how key uncertainties could affect out-
comes requires a credible conceptual model for which any uncertainties 
in, for instance, causal relationships can be explored, and where data 
used as inputs (as opposed to those that are treated as sources of uncer-
tainty) are accurate. 

As such, establishing the utility and credibility of analyses used 
for exploratory analysis requires assessing the credibility of the concep-
tual models and input data used to support them, and carefully docu-
menting the assumptions, uncertainties, and conjectures on which any 
predictions rest. Tools using rigorous data and conceptual models can 
be said to be valid for exploratory analyses. As the credibility of the 
conceptual models or the data declines, the utility of the model for 
exploratory analysis suffers a corresponding decline.

Models that are clearly unsuited to exploratory analysis (too many 
variables, too many uncertainties) often serve other critical functions. 
We argue in this report that RMAT could be used to contribute to a 
valuable program of exploratory analysis for decision support at TSA, 
though RMAT alone is not designed to perform exploratory analyses 
of the type we describe in Chapter Six. 

How, then, do we evaluate RMAT? TSA itself has emphasized 
that RMAT and the associated risk-management analysis processes 
(RMAP) for using RMAT results are chiefly useful for gaining insights 
into the benefits that new or contemplated security programs might 
offer. Quoting from one TSA document we reviewed (TSA, undated-b):

The overall RMAP can serve to
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•	 inform resource allocation with risk-informed calculations and 
other cost-benefit information

•	 provide a structured framework for modeling and evaluating dif-
ferent risk information and perspectives

•	 inform the design and deployment of countermeasures consider-
ing people, processes, and technology in the aviation system.

RMAT could inform policy and resource allocation decisions in 
many ways, with a corresponding variety of validation requirements. 
If RMAT is used to estimate the risk reductions likely to be produced 
by a new screening technology at the checkpoint, a new passenger 
screening process such as the introduction of the 3-1-1 liquid carry-on 
requirement, or a new security program such as TSA’s Screening Pas-
sengers by Observational Technique (SPOT) detection officers, this 
represents a strongly predictive use, requiring demonstration of RMAT 
predictive validity. In contrast, where RMAT is used to enrich under-
standing of terrorism risk and its features, to explore the possible impli-
cations of different assumptions, or to drive improvements in concep-
tual models of terrorism risk, such uses can produce valuable insights 
without requiring reliable predictive validity. 

Throughout this report, we will consider the RMAT validity for 
each of these uses. 

Requirements Development and Validation

In addition to being validated for specific uses, models are validated 
against specific requirements. That is, we must specify what informa-
tion the model is designed to produce. 

Typically, tools such as RMAT are built to satisfy a set of explicit 
requirements, and so validation entails establishing that the require-
ments have been adequately fulfilled. In the case of RMAT, however, 
no comprehensive requirements document was developed. Originally 
conceived as a prototype decision support tool, RMAT has evolved 
into a large-scale system for estimating the risk-reduction benefits of 
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counterterrorism security systems for the U.S. aviation system. As it 
has evolved, new uses and requirements have emerged.

Without an authoritative set of requirements statement, it is not 
possible to establish whether RMAT met its intended functionality. 
Instead, therefore, RAND documented TSA’s current intended uses for 
its risk-assessment processes and its current high-level risk-assessment 
and analysis requirements, to evaluate which among this broader set 
of requirements RMAT satisfies. We collected a broad set of intended 
uses, some of which focus more on the functional requirements of the 
risk-assessment process and others that concern the uses to which TSA 
wishes to be able to put resulting risk estimates. 

We adapted a standard software engineering approach to compile 
the requirements for a TSA risk-management analysis tool (Pfleeger 
and Atlee, 2006). Specifically, we consulted existing documentation 
regarding RMAT capabilities from TSA, guidance for such tools 
offered by the Government Accountability Office (GAO, 2009), the 
National Infrastructure Protection Plan (NIPP; DHS, 2009), and 
others. Additionally, we conducted interviews with program managers 
and officials from TSA, stakeholders in the aviation community, and 
the Boeing Company to solicit requirements. 

Because we collected requirements and intended uses for TSA’s 
risk-assessment needs generally, we have no expectation that RMAT 
should be able to satisfy them all. Instead, we consider in this report 
which of TSA’s current needs can be met with RMAT and which 
require other tools or methods. 

The results of this effort revealed 23 high-level TSA-intended uses 
and requirements for its terrorism risk assessment (see the appendix for 
the complete list of intended uses and requirements). We consider each 
of these requirements in the chapters that follow. 

Approach to Validating RMAT

This report describes RAND’s efforts to validate RMAT for a set of 
TSA intended uses. These validation efforts considered diverse sources 
of evidence, including published scientific literature, elicited subject 
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matter expert judgments, considerations of logic and reasonableness, 
historical evidence, and quantitative empirical analysis of RMAT and 
its outputs. 

Our efforts were divided across four substantive research questions: 

1. Are the adversary behavior and air transportation system con-
ceptual models complete and accurate? We evaluate the adver-
sary conceptual model in Chapter Two and the air transporta-
tion system in Chapter Three. 

2. Are the data used to inform RMAT parameters valid, and are 
procedures for collecting, managing, and updating these data 
sufficient to ensure their continued validity (Chapter Four)?

3. Does the RMAT code, as implemented, perform in the way it 
was designed to? In Chapter Five, we approach this question 
using direct inspection of the code and its properties, sensitivity 
analyses, and independent calculations of expected values.

4. Can risk estimates from RMAT be used in the ways TSA 
intends (Chapter Six). 

Each chapter assesses RMAT in terms of these questions and 
makes recommendations for further improvements to RMAT and 
TSA’s risk-assessment approach. In Chapter Seven, we summarize our 
observations and recommendations. 
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CHAPTER TWO

RMAT Adversary Model

A core feature of RMAT is an adaptive adversary who weighs the advan-
tages of alternative attack strategies, learns new information about the 
aviation system, and plans and attempts to execute an attack.1 This 
chapter assesses the RMAT conceptualization of terrorist adversaries, 
with the objective of establishing whether it adequately captures the 
range of capabilities, decisions, and behaviors of potential adversaries. 
We first provide an overview of the RMAT adversary model and distill 
key aspects of the model into ten propositions about adversary behav-
ior. The second section assesses the accuracy of the propositions based 
on their congruence with the social science literature and empirical evi-
dence. The third section assesses whether the adversary model satisfies 
TSA requirements for adversary modeling.

Overview of the RMAT Adversary Model

The RMAT adversary model is a representation of the essential behav-
ioral and organizational characteristics of a spectrum of terrorist threats 
to the U.S. aviation system. The purpose of the model is to represent 
the adversary accurately enough to allow a realistic test and comparison 
of countermeasures for aviation-focused terrorist attacks. It is designed 
to simulate aspects of the adversary’s behavior and organization that 

1 As described later in this section, RMAT can be run in two modes. Currently, it is run in 
a mode where the weapon and target are predefined. RMAT does have the capability to be 
run in a competition mode where the adversary selects a weapon and target of choice.
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are likely to affect its attack preferences and success rates against a set 
of countermeasures. 

RMAT was not built to implement an established, comprehensive 
theory of how terrorists behave. Instead, RMAT collects the insights 
and intuitions of its designers, subject matter experts who have partici-
pated in its development, and TSA intelligence analysts and officials 
who have worked with it over the years. Since there is no authoritative 
statement of the theory of adversary behavior implemented in RMAT, 
we have extracted from the model a series of factual propositions about 
red behavior that are implied by either the model’s architecture, the 
input data currently used by it, or the manner in which RMAT is cur-
rently used. We then seek confirming or disconfirming evidence from 
the social science and other literatures to validate these core model 
propositions. 

The model’s representation of the adversary’s conduct can be 
broken down into four categories—organizational characteristics, 
learning, attack-planning, and behavior. The following sections describe 
the categories in detail and identify their constituent propositions.

Organizational Characteristics

The adversary’s organization can vary on more than a dozen dimen-
sions, and its capabilities can be set to range from incompetence to 
deadly sophistication. 

The model allows the user to define a terrorist group based on 114 
variables that describe the adversary’s resources, capabilities, tactics, 
preferences, and objectives. The model, as it is current used, features 
three classes of terrorist groups, each associated in different ways with 
al-Qa’ida (AQ) and the global Salafi Jihadist movement, which are 
specified by a set of parameter values.2 The most sophisticated of the 
threats are groups directly linked to the central leadership of al-Qa’ida 
(Core) and the least sophisticated are local cells of “aspirant” jihad-
ists (Aspirants). In between these extremes are al-Qa’ida associates and 
franchises (Franchise), which are only loosely connected to the Core. 

2 RMAT allows for many adversaries to be created and characterized by different combina-
tions of 114 variables, but it currently features only three adversaries.
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Each class differs in sophistication according to its members’ years 
of experience, the geographic scope of its cell “networks” (i.e., local, 
national, and international), and the extent to which it is logistically 
connected to the AQ Core. Table 2.1 highlights features of the Core, 
Franchise, and Aspirant adversary categories and provides the associ-
ated RMAT terminology.

Adversaries may differ in terms of their organizational dispo-
sition, such as the group’s risk tolerance, the characteristics of each 
phase of the operational cycle (e.g., reconnaissance, attack-planning), 
resources, and the importance it assigns to each of several operational 
obstacles it anticipates, such as how long it will take to mount the 
attack. The adversary’s organizational disposition is reflected uniformly 
in the behavior of the adversary agents. 

Learning

The RMAT adversary is a learning organization. Adversary under-
standing of the strengths and vulnerabilities of the aviation security 
system evolves over time. The rate of learning depends on a number 
of factors, such as the skill of adversary agents engaged in a variety of 
available intelligence collection activities and assumptions about how 
new information modifies the adversary’s beliefs. A learning function 
establishes the incremental information gained from each mission.

Attack-Planning

The RMAT adversary selects an attack based on its attractiveness, 
which is determined by multiple adversary preferences and its percep-
tion of the expected risks and consequences of the attack. The adversary 

Table 2.1
Key Aspects of the Adversary Threat Spectrum

Adversary  
Name

RMAT  
Name

Years of 
Experience

Geographic Range of 
Network

Connection to 
AQ Core

Core High 1–10 International Yes

Franchise Hybrid 1–5 National Limited

Aspirant Low 1–5 Local No
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calculates the attack’s consequences as a combination of the expected 
direct and indirect economic costs, deaths, and psychological impact. 
The adversary’s estimation of the property damage and indirect eco-
nomic effects are substantially greater than the defender’s estimation 
of these costs.3 Because estimates of indirect economic costs used in 
RMAT dwarf direct costs, adversaries are biased toward attacks with 
high indirect costs. As the model is currently used, the psychological 
impact of an attack is not one of the factors considered by the adversary 
when selecting an attack.4 

The weights assigned to direct and indirect economic costs, deaths, 
and psychological impact can be modified but have not been for the 
case studies we examined. In each case, the dollar values of deaths, 
direct costs, and indirect costs are summed to produce an attractive-
ness for each type of attack (see Chapter Three for a discussion of these 
values). Actual attack attractiveness is reduced by more than a half 
dozen factors thought to contribute to the adversary’s estimate of the 
risks and benefits likely to result from the attack. After determining 
attack attractiveness for each attack, including attacks involving mul-
tiple parallel attacks, the adversary selects the most attractive one.

The magnitude of several cost inputs can vary depending on 
the adversary group type. The AQ Core has the highest tolerance for 
delays and attack complexity and the lowest tolerance for operational 
risks and expenditures. Aspirant groups have the highest tolerance for 
operational risks and expenditures and the lowest tolerance for delays 
and attack complexity. Adversary type also determines some aspects of 
attack-planning sophistication—specifically, the AQ Core group will 
plan more sophisticated operations than Aspirants will. 

3 The property damage estimates are greater because the adversary assumes a replacement 
value whereas the defender assumes a depreciated value. The indirect cost estimates are 
greater to capture the impact of the attack beyond the commercial aviation system and to 
reflect the adversary’s desire to inflict damage on the wider society. This approach to estimat-
ing expected consequences is discussed in Chapter Three.
4 The model is designed to allow monetized estimates of the psychological value of attacks 
to be incorporated into adversary attractiveness calculations. Because such values are diffi-
cult or impossible to estimate, the psychological value of all attacks is currently set at $0. We 
discuss this issue further in Chapter Six. 
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The adversary is currently limited to one of 67 available “effects” 
or types of attack, which include carry-on bombs, checked baggage 
bombs, cargo bombs, hijackings, insider-assisted attacks, termi-
nal attacks, truck bomb attacks, and stand-off airport attacks. Most 
types of attacks have separate insider-assisted and noninsider-assisted 
variations.

Once the adversary settles on the most attractive attack, attack-
planning shifts to attack construction. Adversaries attempt the most 
attractive attack type available to them. Although risk of failure factors 
into the calculation of attack attractiveness, it is still possible for an 
attack with a low probability of success to emerge as the most attractive 
choice. In practice, this means that there is no deterrence and no shift-
ing of attacks to softer targets outside those selected for consideration 
in any model run. However, an attack that takes more than ten years 
(in the modeled world) to plot and execute is de facto deterred, as the 
attack “times out” in the model.5 

The adversary considers the optimal number of parallel attacks of 
the same type but does not consider orchestrating multiple, simulta-
neous attacks using diverse methods. RMAT assumes that with each 
additional parallel attack, indirect consequences rise almost linearly, up 
to the maximum number of parallel attacks set by the user. After the 
maximum is reached, the model assumes that there are no additional 
indirect consequences associated with additional attacks. 

Behavior

Before attacks, adversary behavior consists of random reconnaissance 
(before a target is selected), directed reconnaissance (after a target is 
selected), defense-stressing missions,6 dry run missions, resource acqui-
sition activities, and adversary learning. The adversary can be detected 
during security screening and interrogation procedures, depending on 

5 By convention, RMAT has been set to run each scenario for ten model years. This time 
period is an input value that can be changed. 
6 In RMAT, defense-stressing missions will give additional information to the adversary 
about the capabilities of blue defenses. It represents the adversary testing the capabilities 
of blue security measures (e.g., determining how well TSA can identify bomb-like objects 
hidden in luggage).
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both adversary and defender skill levels and other factors, and can vary 
in reconnaissance skills. Agent detection can trigger interrogation or 
additional screening; agent reconnaissance skill levels determine how 
much adversaries can learn about defensive systems. 

Attack behavior is manifest in three principal postattack  
outcomes—full success, partial success, and complete failure. An attack 
is classified as a full success when all of the attack objectives are accom-
plished. An attack is a partial success when only a portion of the attack 
objectives is accomplished—for example, a bomb is detonated during a 
flight but does not catastrophically disable the aircraft. Complete fail-
ure occurs when none of the attack objectives are accomplished. 

Assessment of the Implicit Theory of Adversary Behavior 
and Decisionmaking in RMAT

Assessing a model of this type depends on assessing whether the 
model behaves in a manner consistent with what we know and what 
we believe based on evidence or reason. Under ideal circumstances 
we could validate the adversarial model against an empirical database 
derived from previous terrorist events and knowledge of their internal 
workings. Since such a database would be limited at best, we estab-
lish the level of credibility of the adversarial model by assessing the 
soundness of the theory it uses. The RMAT adversary model was not 
constructed to implement an established theory of adversary behav-
iors, as there were none that sought to explain terrorist behavior at the 
high level of detail selected for RMAT. Instead, it implements a set of 
beliefs, estimates, and assumptions offered by subject matter experts, 
intelligence analysts, and others who have been involved in the devel-
opment of RMAT. The resulting theory of adversary behavior has not 
been fully documented, apart from its instantiation in the model’s code 
and in detailed briefings of some of its component functions. To evalu-
ate the credibility of this implicit theory, we have identified a series of 
propositions about adversaries, representing factual claims or beliefs 
that underlie the RMAT adversary model. In the following sections, 
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we describe the implied propositions within RMAT and assess the con-
gruence of each with existing theory and evidence.

Organizational Characteristic Propositions

The spectrum of threats to the U.S. aviation system falls somewhere between 
the AQ Core, AQ Franchises, and low-skill Aspirants.7 This range is a 
practical starting point, but it excludes some potential threats, such 
as high-skill Aspirants. Aspirants vary widely in sophistication, so 
characterizing most Aspirants as low-skilled is unrealistic. The Aspi-
rants responsible for the 2004 Madrid train bombings employed their 
extensive knowledge of the local environment and criminal world to 
facilitate their attack. Although they were not highly sophisticated, 
they were clever enough to evade security measures and complete their 
attack (Kenney, 2010). Aspirants conducted the 2005 London transit 
bombings, which were relatively sophisticated and well planned (HSI, 
2007). This may be important for the model because a high-skill rank-
ing could produce an unexpected multiplying effect when coupled 
with other aspirant characteristics such as high risk tolerance or their 
presumed willingness to use more of their resources on attacks. 

The primary characteristics distinguishing different adversaries 
concern their preferences, resources, tactics, skills, and learning, and 
these differences are specific and quantifiable. RMAT allows for vari-
ation in most of the key features that differentiate groups and their 
capabilities. Assigning values to these parameters is challenging, how-
ever. Some Aspirants with no experience in militancy have proven 
analytically savvy, and some of the experienced AQ Core cells have 
proven analytically obtuse (Jordan, Mañas, and Horsburgh, 2008). 
Some groups are better than others at learning from their experiences 
and deciding whether the information they are using to make deci-
sions is wrong (Jackson, 2009). A group with a high analytic capabil-
ity would be better at identifying whether its capabilities are matched 

7  Many of these propositions are influenced by the input values currently selected for use 
by RMAT. RMAT has the flexibility to incorporate different adversaries with custom behav-
iors. Because RMAT results are only as good as the model and its inputs, we evaluate both 
here, but note in Table 2.3 (below) whether propositions rest chiefly on data inputs, model 
architecture, or TSA uses of RMAT results. 
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or mismatched with a given security and detection regime, which is 
an important determinant of terrorist operational success and failure 
(Jackson and Frelinger, 2009). 

Adversary Learning Propositions

Adversaries use multiple reconnaissance, dry run, and defense-stressing mis-
sions to learn about the aviation security system. Although many adver-
saries conduct basic, physical reconnaissance, the model’s current data 
inputs likely overestimate the volume of these targeted reconnaissance 
missions per plot. Highly productive information-gathering activities, 
such as dry run and defense-stressing missions, are extremely rare. 
Although current data inputs for the number of such physical recon-
naissance missions are too high, reconnaissance, dry run, and defense-
stressing missions can be adjusted in RMAT. RMAT also accounts for 
“virtual” reconnaissance—intelligence collected on the Internet, for 
example, which is very likely to be a common practice among terrorist 
groups.

Known examples of physical reconnaissance involve only very 
basic data collection (e.g., driving around the perimeter of an air-
port, passing through security checkpoints without “testing” the secu-
rity procedures, or making routine observations about the defender’s 
methods for searching personal bags). As law enforcement efforts have 
increasingly targeted terrorist plotting, the actual and perceived likeli-
hood of being caught conducting surveillance and reconnaissance mis-
sions has grown (Kenney, 2010). This may explain the low incidence of 
productive or probing missions. Table 2.2 provides details on a selec-
tion of aviation attacks and plots directed at U.S. and United Kingdom 
(U.K.) targets since 1995 and the observed incidence of terrorist recon-
naissance and dry run missions.8 For the majority of these cases, when 
reconnaissance was conducted it was limited and basic, as noted in the 
table. Additionally, reconnaissance missions can be expensive (e.g., the 

8 Information is approximate and based on U.S. court documents, official accounts, and 
media accounts. The data do not include dry runs or reconnaissance missions that were not 
detected by intelligence or law enforcement authorities. The selection of attacks is considered 
quasirandom because these are plots for which information was available in open sources.
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Table 2.2 
A Selection of Aviation Attacks and Plots Directed at U.S. or U.K. Targets and the Prevalence of Reconnaissance,  
Dry Runs, and Insider Assistance

Plot Date Group
Successful 

Attack
Reconnaissance/ 

Surveillance Dry Runs
Insider 

Assistance

Arif Uka—Germany shooting 2011 Aspirant Yes Probably limited No Yes

Cargo bomb plot 2010 AQAP No No Possibly No

Rajib Karim—British Airways 
employee

2010 AQAP No Yes No Yes

Christmas Day plot 2009 AQAP No Unknown No No

Air National Guard plot 2009 Aspirant No Limited No No

Glasgow Airport attack 2008 Aspirant No Probably limited No No

JFK Airport plot 2007 Aspirant No Limited No Yes

Transatlantic plot 2006 Aspirant/ Core No Unknown Possibly 
planned

No

LAX Airport—El Al ticket counter 
shooting

2002 Other Yes Unknown No No

Shoe-bomber 2001 Hybrid No Limited Unknown No

9/11 2001 AQ Core Yes Yes Yes No

Millennium plot—LAX Airport 1999 AQ Core No Probably limited No No

Bojinka plot 1995 AQ Core No Yes Yes No

NOTE: AQAP is Al-Qa’ida in the Arabian Peninsula.
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cost of multiple first-class airline tickets) and, as a result, less attractive 
than publicly available information, which is relatively inexpensive. It 
stands to reason that cost sensitivity probably affects Aspirant groups’ 
decisionmaking more than that of less financially strapped Core and 
Franchise plotters. 

Attack-Planning Propositions

The adversary selects an attack based on its attractiveness. The literature 
mostly supports the notion that terrorist groups select targets and 
devise attack strategies in a calculated, rational manner (Morral and 
Jackson, 2009).

AQ Core has the highest tolerance for delays and attack complexity 
and the lowest tolerance for operational risks and expenditures. Aspirant 
groups have the highest tolerance for operational risks and expenditures 
and the lowest tolerance for delays and attack complexity. That AQ Core 
groups have the lowest tolerance for risk is partially contradicted by the 
literature and by well-known facts (does anyone imagine that the 9/11 
attack was low risk?). According to a study by the Combating Terrorism 
Center, plots tied to AQ senior leaders were successful only 50 percent 
of the time, whereas plots produced by the movement (Aspirants) were 
much more likely to succeed (Helfstein and Wright, 2011). According 
to the study, the Core is likely taking bigger risks for a bigger payoff, 
usually against more symbolic and hardened targets. This produces 
more disrupted plots but more casualties overall and possibly a greater 
psychological impact. One interpretation of these data is that some 
Aspirants chose softer targets to maximize their success given limited 
resources and training, which may indicate that Aspirants have a lower 
tolerance for risk.

The second element of the proposition—that AQ Core groups 
have the highest tolerance for delays—is neither strongly supported  
nor contradicted by the literature. The AQ Core’s patience with the 
planning of 9/11 appears to be consistent with this proposition, but 
even this attack was shaped by time considerations—Osama bin Ladin 
was alleged to have rejected an additional attack against a nuclear reac-
tor because “there was not enough time to prepare for an operation” 
(Lichtblau, 2003). Some Core plots, such as the Millennium attempt, 
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suffered from apparent impatience and hasty preparation. Some Aspi-
rant plots, in contrast, such as the London transit bombings, experi-
enced setbacks and delays that likely tested the group’s patience but 
were executed successfully nonetheless. 

The third element of this proposition seems to be mostly correct. 
Aspirant groups tend to be small and resource-constrained, leaving 
them less likely to plan or execute complex attacks. There are several 
examples, however, of Aspirants conducting successful complex attacks 
(e.g., the 2005 London transit bombings).

Finally, RMAT correctly assumes that as attack complexity 
increases, so too does the risk of discovery and failure (Enders and Su, 
2007; Helfstein and Wright, 2011). One reason for this is that complex 
attacks require more attackers with more skills, additional technology 
(e.g., communications), and additional interactions among members 
(Jackson and Frelinger, 2009). 

Adversaries attempt the most attractive attack type available to them, 
no matter how low they perceive their chances of success to be. RMAT cor-
rectly assumes that as the probability of success decreases, the attrac-
tiveness of an attack decreases. Nevertheless, adversaries are obliged in 
RMAT to mount an attack, even if none of the attack options stands a 
good chance of success. In practice, this means that there is no deter-
rence and no shifting of attacks to softer targets outside those selected 
for consideration in any model run, such as targets outside the aviation 
system.9 The principal limitation with this proposition is that many ter-
rorist groups are keenly and explicitly averse to undertaking operations 
that appear to have a poor chance of success, and, in reality, attack-
ers always have the option of shifting their attack to an easier target 
(Morral and Jackson, 2009). Some groups are better than others at 
estimating their chances of success and adjusting their plotting accord-
ingly, likely producing some variation between groups in the ability to 
shift strategies (Jackson, 2009).

9 TSA recognizes that deterrence is not well handled in RMAT and has developed a “threat-
shifting methodology” it uses in interpreting findings from RMAT and other analyses. We 
did not assess the TSA threat-shifting methodology. 
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In competition mode (i.e., where the adversary selects an attack 
from among a set of options), this proposition can exhibit risk-shifting 
within the aviation system in ways supported by social science theory. 
Enders and Sandler (1993) argue that policy measures that made certain 
terrorist modes of attack more difficult resulted in terrorists immedi-
ately substituting into other attack modes. For example, ground-based 
aviation attacks (e.g., vehicle bombs outside airports and bombs inside 
airports) have recently become relatively more common than attacks 
inside airplanes (Jackson and Frelinger, 2012; Berrebi, 2009). Jackson 
and Frelinger surmise that ground attacks are simpler and less logisti-
cally demanding. Brandt and Sandler (2010) argue that as governments 
succeeded in stopping terrorist operations, some terrorists shifted their 
focus to harder-to-defend targets. Shughart (2006) notes that terrorist 
hijackings of commercial aircraft declined in favor of other hostage-
taking missions after airport security was tightened by installing metal 
detectors to screen passengers. 

The attack’s consequences are a combination of the maximum possible 
direct and indirect economic costs, deaths, one-time government costs (such 
as purchasing new security technology to prevent repeats of any successful 
attack), and psychological impacts, and the values assigned to these factors 
are relatively constant across adversaries. This proposition has a number 
of limitations. First, the values assigned to different outcomes will vary 
both within and between terrorist groups. Even within the subset of 
terrorist operations against aviation targets, operational objectives have 
varied widely—some were designed to produce disruption and others 
focused on destruction (Jackson and Frelinger, 2012). Drake argues 
that ideological differences between terrorist groups produce differ-
ences in the targeting patterns, even between groups that have superfi-
cially similar but distinct ideologies (Drake, 1998). 

An objective that is not contemplated in this proposition is that 
attacks may be designed to influence the adversary’s own constituents 
and sympathizers, an objective that may or may not directly relate 
to the ideological agenda the group pursues (Crenshaw, 2001). This 
component would include the attack’s estimated effect on the group’s 
morale, prestige, and recruitment rates. Leading jihadi strategist Mus-
tafa Setmariam commented that the criteria for targets should be 
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selected based on (1) where it hurts the enemy the most and (2) where it 
awakens Muslims and revives the spirit of jihad and resistance (Cruick-
shank and Ali, 2007). A terrorist group’s target selection may reflect 
their desire to produce this type of beneficial psychological impact.

RMAT includes a parameter that allows for the idiosyncratic 
preferences a group’s leader may hold that pushes a group toward irra-
tional preoccupations with certain kinds of attack (e.g., the Aum Shin-
rikyo leader’s fixation with poisons) (Jackson, 2009). However, as such 
characteristics are highly specific to individual groups, data are not 
available to properly set this variable for most cases to date.

The estimated psychological impact of an attack does not affect the 
adversary’s calculation of an attack’s attractiveness. RMAT includes a 
parameter meant to describe the monetized value of the psychologi-
cal consequences of different attack types. To date, this parameter has 
been zeroed out of analyses not because psychological consequences are 
unimportant but because the problem of estimating and monetizing 
these effects has not been solved. Notwithstanding these estimation 
difficulties, this proposition is almost certainly incorrect. 

A terrorist group’s estimate of the psychological impact of its 
attack often plays a large role in its decisionmaking and target selec-
tion. Libicki, Chalk, and Sisson (2007) found that most al-Qa’ida 
attacks have been designed to coerce a targeted population—which is 
largely a psychological objective—in part by threatening future attacks 
of the same kind. Indeed, most observers would agree that psycho-
logical effects like persuading a country to change its foreign policy 
represent one of the principal objectives of terrorism. Most al-Qa’ida 
attacks, for instance, have been designed to coerce a targeted popu-
lation, rather than simply induce short- or long-term economic costs 
(Libicki, Chalk, and Sisson, 2007). Al-Qa’ida’s long-held goal of forc-
ing the withdrawal of U.S. military forces from Muslim countries is 
a clear example of the group’s interest in leveraging the psychological 
impact of their attacks to change U.S. foreign policy goals in ways that 
cannot be readily monetized. 

Relatedly, one-time government costs (such as purchasing new 
security technology following a successful attack) have also been set to 
zero in the model, presumably because there is no consensus on what 
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the correct value would be. It seems unlikely, however, that terrorist 
groups would give little or no consideration to the estimated cost of the 
government’s security adaptations when they select a target.10

Because psychological effects and one-time government costs rep-
resent prominent effects in Core and Franchise adversaries, and pos-
sibly others, the omission of these factors represents a key shortcoming 
of the existing model. These omissions reflect the unavailability of valid 
data that could be used to specify these parameters. To the extent that 
the model has been designed to require monetization of constructs that 
may not best be represented with a single monetary dimension, these 
may also be viewed as limitations of the model’s design. 

Adversary Behavior Propositions

The adversary’s preattack behavior consists of random reconnaissance 
(before a target is selected), directed reconnaissance (after a target is selected), 
defense-stressing missions, dry run missions, resource acquisition activities, 
and adversary learning. As noted above, most known reconnaissance 
missions were rudimentary and quite limited in number. If a dry run 
is defined as running through a large part of an operation without 
actually conducting the attack, then few plots in the sample set of 13 
involved dry runs (see Table 2.2). The Bojinka plot, the 9/11 attacks, 
and the AQAP cargo bombing plot included some active testing of 
security regimes, but many other plots do not appear to include such 
behavior. We believe that the current settings used with RMAT that 
call for multiple physical reconnaissance missions likely overstate the 
level of reconnaissance that should be expected from most adversaries. 

Summary of Select Propositions

The following table summarizes our assessment of the validity of the 
propositions discussed above. Some of these propositions concern how 
the model is constructed, some concern the data inputs used to set 
parameter values, and some concern how TSA uses the model. We 

10 This is another case where RMAT has the flexibility in a parameter value that is difficult 
to establish. Also, as reported in Inspire, an online jihadi magazine, one-time government 
costs to western governments was a major objective of the printer bomb attack.
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have distinguished each of these in Table 2.3 as propositions that con-
cern features of the model’s “architecture” or “inputs.” For those prop-

Table 2.3
Evaluation of Select RMAT Adversary Propositions

Model Proposition Evidence Type

The spectrum of threats to the U.S. aviation system falls 
somewhere between the AQ Core, AQ Franchises, and 
low-skill Aspirants.

Uncertain Input

The primary characteristics distinguishing different 
adversaries concern their preferences, resources, tactics, 
skills, and learning, and these differences are specific 
and quantifiable.  

Uncertain Architecture 
and inputs

Adversaries use multiple reconnaissance, dry run, and 
defense-stressing missions to learn the aviation security 
system.

Uncertain Input

The adversary selects an attack based on its 
attractiveness.

Strong Architecture

The AQ Core has the highest tolerance for delays 
and attack complexity and the lowest tolerance for 
operational risks and expenditures. Aspirant groups 
have the highest tolerance for operational risks and 
expenditures and the lowest tolerance for delays and 
complexity.

Uncertain Input

Adversaries attempt the most attractive attack type 
available to them, no matter how low they perceive their 
chances of success to be. 

Weak Architecture

The attack’s consequences are a combination of the 
maximum possible direct and indirect economic costs, 
deaths, one-time government costs (such as purchasing 
new security technology to prevent repeats of any 
successful attack), and psychological impacts, and the 
values assigned to these factors are relatively constant 
across adversaries.

Weak Architecture

The estimated psychological impact of an attack 
does not affect the adversary’s calculation of attack 
attractiveness.

Weak Architecture 
and input

The adversary’s preattack behavior consists of random 
reconnaissance (before a target is selected), directed 
reconnaissance (after a target is selected), defense-
stressing missions, dry run missions, resource acquisition 
activities, and adversary learning.

Uncertain Architecture 
and input
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ositions with substantial social science or empirical support, we rate 
the proposition as having a “strong” evidence base. Where evidence is 
sparse or the proposition receives some confirming and some discon-
firming support, we rate it “uncertain.” Where we find little evidence 
of support or evidence contradicting the proposition, we rate it “weak.”

Adversary Model: Satisfaction of TSA Requirements

Several of the risk-assessment intended uses and requirements elic-
ited by RAND concerned how adversaries should be conceptualized 
or modeled. Table 2.4 summarizes our assessments of RMAT perfor-
mance on two high-priority requirements and one medium-priority 
adversary requirement.11 

The medium-priority requirement (6) is to ensure that risk assess-
ments clarify the attack preferences of potential adversaries. RMAT 
clearly offers such an output. 

The first high-priority requirement (Requirement 8) is to depict 
adversaries that are adaptive and change their actions to evade imple-

11 In this table and throughout this report, we provide summary descriptions of the TSA 
risk-assessment requirements we collected. For more thorough descriptions, see the appendix.

Table 2.4
RMAT Adversary Model Satisfaction of Associated TSA Requirements

Requirement Short Description
RMAT Satisfaction 

of Requirement

6 Risk assessments should clarify the attack 
preferences of potential adversaries.

Yes

8 Risk analyses should conceptualize 
adversaries as adaptive, assessing how 
risks to the air transportation system 
change as adversaries attempt to evade 
countermeasures.

Yes

9 Risk analyses should represent the behavior 
of all potential adversaries (foreign and 
domestic; high- and low-skilled) using 
empirical evidence on such adversaries’ 
behavior and capabilities.

Partially
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mented countermeasures. RMAT adversaries are designed to be adap-
tive in several ways. The adversary learns about countermeasures 
through reconnaissance, and then plans attacks that optimize conse-
quences. Introduction of a countermeasure, therefore, can cause dif-
ferent attacks to be adaptively selected. This adaptiveness is some-
what limited by the model’s requirement that adversaries mount some 
attack, even if none of those available offer much hope of success. 
The amount of adaptiveness depends in part on what the adversary 
can learn through reconnaissance. We do not believe there is avail-
able information to validate the learning capability of the adversary. 
Learning is more differentiated by the skill levels assumed for adver-
saries of different types, as more skilled adversaries are assumed to be 
able to conduct more productive reconnaissance. As noted above, there 
is little evidence that terrorists engage in the frequent and productive 
defense-stressing and dry run missions currently attributed to these 
more skilled adversaries. Despite these limitations, we judge RMAT to 
reasonably satisfy Requirement 8. 

The second high-priority requirement (9) is to depict adversary 
behavior that is based on the best empirical evidence or widely accepted 
estimates of adversary behavior. Although much of the RMAT adver-
sary model is supported by available social science, there are important 
exceptions. For organizational characteristics, current inputs defin-
ing adversary types may not describe an adequate range of adversary 
planning sophistication, adaptability, or capabilities. Adversary learn-
ing propositions almost certainly overemphasize the role of physical 
reconnaissance, defense-stressing, and dry run missions. Finally, model 
assumptions about attack planning are not well supported on some 
issues, including on the variation between adversary types on risk toler-
ance and the importance of psychological impacts on target selection.

One aspect of this requirement is the importance of modeling 
adversaries with a range of skill levels. The model does capture such 
a range with its three types of adversaries (AQ Core, Franchise, and 
Aspirants), which vary in their levels of sophistication. As the model is 
currently used, however, some adversary types may not be well repre-
sented by these three types, including more capable aspirants.
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Recommendations

Here, we recommend a number of improvements that should be con-
sidered for the adversary model.

TSA should explore strategies for understanding and conveying the 
effects of many uncertain parameters in RMAT. Table 2.3 illustrates a 
fundamental challenge posed by RMAT: how to produce meaningful 
results for decisionmakers when many of the input data and underly-
ing causal mechanisms are unknown or even unknowable. Currently, 
RMAT provides the user great flexibility in setting input variables that 
can capture a wide spectrum of plausible adversary behavior. Flexibil-
ity alone is not sufficient when values for these inputs are uncertain. In 
Chapter Six, we recommended explicitly accounting for uncertainties 
at a lower level of model resolution so that the range of plausible risk 
reductions associated with new technologies can be explored to iden-
tify robust security strategies. 

Attacks with a low probability of success should be modeled as deterred 
or shifted to softer targets inside or outside the aviation system. Instead of 
requiring that the adversary attempt to mount one of the attacks made 
available to it in RMAT, no matter how low he views his chances of 
success, a more realistic approach might be to include one addition 
attack option, called “some other attack,” with a fixed attractiveness 
set at a level corresponding to what users believe to be the minimum 
attractiveness or probability of success that attackers require to proceed 
with an operation. When other options become less attractive than 
“some other attack,” the suite of available attacks considered in RMAT 
could be considered to have been deterred, though risk to the aviation 
system would be reduced only if the possibility of a novel attack against 
it was ruled out. 

Adversaries should exhibit fewer instances of high-risk, high-payoff 
dry runs and defense-stressing missions. The modeling of these missions 
probably overestimates what the adversary can learn about the avia-
tion system with active surveillance and overestimates the exposure the 
adversary has to blue agents in the course of surveillance. This recom-
mendation provides additional realism to what we would expect, but 
the flexibility of RMAT will allow examination of the effects of ter-
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rorists who have better understanding of blue vulnerabilities through 
multiple dry runs. This gives RMAT the capability to examine rare, 
catastrophic attacks. This added capability requires the proper, even 
more stringent, controls with how RMAT is used and how results are 
interpreted to prevent misinterpretation of results. 

The model should account for the adversary’s estimation of the psy-
chological impact, impact on its supporters, and one-time government costs 
of each attack in its calculation of attack attractiveness. The model is 
designed to allow users to input a monetized estimate of the psycholog-
ical impact of attacks. Difficulty in estimating these values has caused 
TSA and Boeing to set this parameter to zero, meaning that psycho-
logical impacts are not factored into the adversary’s decisions. Because 
we have good reason to believe that many terrorists do consider psy-
chological impacts to be a central objective of their target selection, the 
current RMAT configuration raises important doubts about the cred-
ibility of modeled target selection. It may be that it is not possible to 
account for all psychological impacts on a single monetized dimension. 
Accounting for the adversary’s interest in the coercive benefits of an 
attack—for example, by taking an unexpectedly greater risk to orches-
trate a radiological attack that induces few economic costs but exacts 
a large psychological toll—may enhance the accuracy of the model’s 
target-selection output. Creating a new variable that captures the value 
of noneconomic psychological costs may help to accomplish this task. 
The variable would play into the calculation of attack attractiveness by 
assigning a “psychological impact” coefficient to each weapon-target 
pair. For example, in-flight, chemical, biological, radiological, insider, 
or parallel attacks might receive a higher psychological impact score 
than simple, inexpensive, and non–in-flight attacks. The scale might 
be imprecise, or merely ordinal, but would help to rank attacks based 
on their relatively psychological impact attractiveness. Because such a 
scale would be estimated with considerable imprecision, it would need 
to be considered in the overall RMAT modeling strategy for account-
ing for the effects of deep uncertainties on model outcomes described 
in the first recommendation, above. 

The spectrum of threats faced by the U.S. air transportation system 
would be better represented by adding two types of adversaries. Our review 



32    Modeling Terrorism Risk to the Air Transportation System

of open source literature on aviation threats revealed at least two adver-
saries that should be added in RMAT analyses. These are a low-skilled, 
risk-seeking Core group and a high-skilled, risk-averse Aspirant group.

The RMAT adversary model structure and inputs should be deter-
mined, along with their uncertainties, from a wider range of sources. Cur-
rently, the RMAT structure and inputs for the adversary model have 
been heavily dependent on TSA intelligence experts. This dependence 
has been mainly due to the absence of an adversary behavior theory. 
In our efforts to assess the RMAT adversary model propositions, we 
found several other resources that should be considered in constructing 
the adversarial model architecture and determining the proper inputs. 
Such sources include the terrorism and social science literatures, U.S. 
court documents, official accounts, media accounts, counterterrorism 
analyses from the Federal Bureau of Investigation, experts from the 
broader intelligence community, as well as TSA intelligence experts. 
Whereas the current model benefits from each such source, more effort 
is needed to ensure that the best available evidence is used in the model. 



33

CHAPTER THREE

RMAT Defender Model

Overview

Model Scope and the RMAT World

RMAT represents terrorism defense in the aviation system in the con-
text of a virtual “world” that matches the aviation system. The world 
is the operating space for RMAT—all adversary and defender opera-
tions occur as agents (people) and weapons move through the world. 
The RMAT world includes a comprehensive representation of points at 
which defender and adversary agents and weapons might pass, such as 
the curbside, checked baggage inspection, passenger screening points, 
lobbies, airplanes, freight-processing facilities, and catering kitchens. 
The RMAT world is an abstraction of the U.S. commercial aviation 
system. The model focuses on standard operating procedures and 
equipment that are common to all airports. In so doing, it treats all 
duplicated elements of the aviation system (e.g., passenger-screening 
checkpoints) as structurally and functionally identical to each other.1 
Some implications of this choice are discussed below.

The intended scope of RMAT is the U.S. commercial aviation 
system. This includes the approximately 450 U.S. commercial airports 
regulated by TSA and all flights departing from or arriving at these air-
ports. While seemingly clear, the boundary to this system is not always 
obvious. Interfaces with non-U.S. airports, off-airport freight pro-
cessing, catering, general aviation, mass transit, air traffic control and 

1 The RMAT world accounts for differences between large and small airports in how 
checked baggage is screened.
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other information systems, and other off-airport operations can impact 
U.S. commercial aviation system security. The extent to which RMAT 
accounts for these interfaces is discussed in subsequent sections.

The defender system in RMAT consists of a variety of different 
types of blue agents (people) and instruments populating the world, as 
well as rules describing the conditions under which people may move 
to different parts of the world. 

Blue Agents

The RMAT world is populated by a number of different types of blue 
agents that have some role in security. These agents include those with 
security role (e.g., TSA officers, law enforcement officers, federal air 
marshals) as well as a wide range of agents not nominally focused on 
security but who may observe suspicious behavior, detect weapons, or 
perform some other security function (e.g., ticket agents, maintenance 
workers, freight receivers). Each blue agent type is characterized by a 
number of attributes. Attribute values are drawn from a distribution 
for each Monte Carlo run, and all agents of a particular type have the 
same value for each attribute in an individual Monte Carlo run. 

Blue agents occupy space and move within the world. The frac-
tion of time an agent is present in any world location is modeled. Some 
blue agents are not easily recognizable as blue agents (e.g., undercover 
airport agents).

Blue agent behavior includes a variety of different actions, such 
as screening passengers and luggage, resolving detection instrument 
alarms, observing suspicious activity, and interrogating or apprehend-
ing red agents. The actions performed by a given blue agent type are 
dictated by standard operating procedures. 

Instruments

The RMAT world contains instruments. Instruments are classified as 
either material detectors (e.g., canine or metal detectors) or perception 
enhancers (e.g., whole-body imagers, video cameras). Instruments are 
characterized by technical attributes, such as their performance detect-
ing particular quantities of materials used in weapons. Blue agents use 
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instruments and other methods to detect dangerous materials or suspi-
cious activity.

Credentials

Eleven different credentials may be required to move within parts of 
the world. These credentials are generally either a boarding pass for 
passengers or a particular type of security identification for employees. 
Red agents may acquire credentials over the course of a simulation.

Action Outcomes and Decision Points

The outcomes of defender actions in RMAT are determined by func-
tions that depend on attribute values of modeled objects (blue agents, 
red agents, instruments, weapons) and occasionally other factors. For 
defender actions, RMAT defines functions for detection by instru-
ments, detection by hand-searching, noticing suspicious activity or 
bags, and determining outcomes of interrogations. These functions 
represent one of the key pillars of the RMAT model. They determine 
the extent to which different combinations of weapons, targets, agent 
characteristics, and attack pathways will lead to successful attacks. 
Consequently, model outcomes depend strongly on data and assump-
tions that make up these functions. The relevant parameters to include 
in a function, the functional forms, and the parameter value ranges 
considered are informed by expert input and empirical data. Because 
of the heavy reliance on data, the case studies include substantial data 
acquisition efforts.

Function outputs can change over the course of a simulation as 
a result of adversary actions or learning. Although the attribute values 
of blue agents, instruments, and weapons are fixed, red agent attribute 
values and weapon choices can vary among agents and change over the 
course of a single simulation run as adversary missions progress. 

The model also includes several decision points at which a path 
or action is governed by a probability that is independent of modeled 
object attributes. These include the probability that an item will be sub-
jected to a particular screening method among multiple allowed meth-
ods (e.g., whole body imager versus walk-through metal detector for 
people, X-ray versus advanced technology X-ray for carry-on luggage, 
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X-ray versus shoe scanner for shoes, internal versus external explosives 
trace detection for checked luggage at small airports, multiple screen-
ing methods for freight), probabilities that passengers undergo second-
ary screening at checkpoints and gate areas, and the probability that 
freight will be loaded onto a freight versus a passenger aircraft.

Validation 

Our validation of the defender model in RMAT addressed four areas:

•	 identifying and evaluating the validity of key assumptions implicit 
in the overall system design

•	 comparing the world representation in RMAT to external sources
•	 assessing the completeness of the attack scenarios considered in 

RMAT, including both weapon-target pairings and pathways by 
which attacks are carried out

•	 comparing the attack consequences modeled in RMAT to exter-
nal sources.

We validated the defender model primarily against a general cri-
terion that the model be able to estimate reductions in terrorism risk to 
the commercial aviation system associated with different security tac-
tics. We also discuss the extent to which the defender model addresses 
those requirements in the appendix that concern RMAT representa-
tion of security, air transportation systems, their vulnerabilities, and 
the consequences of attacks. 

Our validation compared assumptions in RMAT to airport 
design guides, aviation security literature, security policies documented 
by TSA, and expert input from aviation security practitioners. Subject 
matter experts were met in-person and provided with an overview of 
RMAT; a detailed description of the RMAT world, including assump-
tions about agents, instruments, and credentials; a description of the 
weapon-target pairings and attack pathways modeled in RMAT; and 
a list of additional weapon-target pairings and attack pathways not 
included in RMAT. Experts were asked about the accuracy and com-
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pleteness of each of these aspects of the defender model. We met with 
four subject matter experts:

•	 Shannon Garcia-Hamilton, Federal Security Director, Ontario 
Airport, CA (TSA, top security person on site, has security 
approval and oversight responsibility)

•	 Danny Turner, Assistant Federal Security Director for Law 
Enforcement, Ontario Airport, CA

•	 Greg Staar, Commander of Airport Police, Ontario Airport, Ca. 
(operational responsibility for much of the security)

•	 Erroll Southers, former Assistant Chief for Homeland Security, 
Los Angeles Airport Police Department

Additional input and guidance were provided by Randy Harri-
son from Delta Airlines, Chris Bidwell and Lydia Ortiz from Airports 
Council International, and Dr. Julie Kim at RAND.

Overall, our validation indicated that the defender system repre-
sentation in RMAT is a particular strength of the model. However, the 
model has some gaps that TSA and Boeing should consider remedying, 
as they could have substantive effects on RMAT results. We also iden-
tified several minor errors and omissions. In each case, we briefly sum-
marize the potential impact on the operation and results of RMAT.

Key Assumptions in the RMAT Defender System

There are several general assumptions implicit in the way the defender 
system in RMAT is represented. We discuss the important assump-
tions and their implications for the validity of the model.

Defender System Is Static 

One general assumption is that the defender system acts only in response 
to adversary actions. Blue agents respond to red agent actions, and 
instruments respond to weapons being introduced. The model does not 
allow for proactive steps during a model run, such as introducing new 
technology, changing agent assignments, or changing the world. We 
find that this is a reasonable and, in some sense, necessary assumption 
given the objectives of RMAT. It is reasonable because, in the course 
of normal aviation security operations, defender activities are triggered 
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by potential adversary actions. In the longer term, the defender world 
does, of course, change as new technology and approaches are intro-
duced. However, these are exactly the sorts of changes that RMAT has 
been developed to evaluate. Thus, the defender system is held constant 
in an individual RMAT simulation run to provide a baseline for com-
parison. Changes to the defender system can be implemented by the 
user in subsequent runs to compare the relative outcomes of the two 
defender system arrangements.

Use of a Single Abstraction of the Aviation System 

Another general assumption is that security risks to and defense of 
the aviation system can be adequately modeled with a single abstrac-
tion of the aviation security system. This assumption has potentially 
important implications. One is that RMAT cannot model the secu-
rity idiosyncrasies of individual airports. Security can differ among 
airports because of design differences (e.g., some have a single, “mega-
”passenger screening checkpoint, whereas others have individual pas-
senger screening checkpoints for each terminal or airline). However, 
airport security is subject to TSA regulation and all must adhere to 
standard procedure, staffing, and instrumentation requirements (TSA, 
undated-d). This regulation extends beyond TSA employees to include 
the roles of local law enforcement and private security staff. Conse-
quently, we have not identified any differences in the inherent design 
or operation of security that we believe significantly affect the ability of 
RMAT to assess the value of particular security measures.

Security can also differ among airports because of partial or 
incomplete deployment of security measures. For example, AIT and 
BDOs are currently only deployed at a subset of TSA-regulated air-
ports (GAO, 2010a; GAO, 2010b). This is an important consideration 
because adversaries’ risk perceptions may vary across airports depend-
ing on the security systems they believe have been implemented, and 
so they may actively seek out those airports they believe to be more 
vulnerable. RMAT allows the user to define the probability that an 
adversary will encounter any security measure, and this functionality 
can be used to account for partial deployment. In the case of nonvisible 
security measures, such as BDOs, adversaries cannot selectively avoid 
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them. If BDOs are deployed to airports in a nonpredictable way (i.e., 
they are not deployed only to the largest airports), then the probability 
of adversaries’ encountering BDOs is equal to the BDO nationwide 
deployment level. For security measures visible to adversaries, such as 
AIT, adversaries could deliberately choose locations without AIT. In 
this case, partial deployment is functionally equivalent to the measure 
not existing. Alternatively, a less sophisticated adversary may not be 
able to selectively avoid the technology, in which case the probability of 
encountering it is equal to its nationwide deployment level. The degree 
to which an adversary may be willing and able to avoid a partially 
deployed security measure will depend on the details of the particular 
measure, so the option to leave this as a user choice in RMAT appears 
reasonable.

Another implication of using a single abstraction of the U.S. avia-
tion system is that RMAT does not distinguish between security for 
flights originating within the United States and those originating in 
another country. Although RMAT is intended to simulate only the 
domestic commercial aviation system, one important access route to the 
domestic commercial aviation system is international flights entering 
the United States. Consequently, security associated with U.S.-bound 
international flights could be an important addition to RMAT scope. 
Given that many terrorist threats to U.S. aviation in the past decade 
derived from inbound international flights (shoe bomber, underwear 
bomber, and the AQAP printer bombs), the current configuration in 
RMAT of not modeling differences in security requirements between 
domestic and international flights represents a shortcoming if these dif-
ferences are significant.

Our investigation suggests that these differences can indeed be sig-
nificant. It is difficult to characterize the differences precisely, because 
the actual security requirements for domestic and international flights 
are quite general. Practical differences arise in how the requirements 
are implemented and enforced. TSA has direct control over domestic 
security activities. In contrast, TSA can influence security on inter-
national flights only indirectly, primarily by granting or withholding 
permission to land in the United States. International airports must 
conform to some international standards, and TSA has the right to 
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set threshold standards on the security protocols for flights that are 
bound for U.S. destinations (Electronic Code of Federal Regulations, 
undated). There are universal standards for such things as liquids. In 
2006, more than 70 countries joined an agreement limiting the quan-
tity of liquids passengers are allowed to carry onto a passenger plane 
(TSA, undated-e). On other issues, there is less standardization. For 
instance, in the United States, all passengers must remove their shoes 
(TSA, undated-e), but in Japan, only those wearing “thick-soled” shoes 
are required to remove them (Japan Airlines, undated).

In addition to variations in how security is implemented, an inves-
tigation by the GAO (2011) found that compliance is highly uneven. 
It found that “some foreign airports complied with all of TSA’s avia-
tion security assessment standards; however, TSA has identified serious 
noncompliance issues at a number of foreign airports. Common areas 
of noncompliance included weaknesses in airport access controls and 
passenger and baggage screening.” Input from security experts in our 
study confirms this concern. They noted that differences in security 
practices exist from country to country and that security practices for 
many U.S.-bound international flights are not as rigorous as in domes-
tic airports.

The fact that RMAT does not capture these differences is a seri-
ous gap that limits its value in assessing the benefit of candidate secu-
rity improvements. This gap violates Requirement 10, which specifies 
that “the scope of air transportation risk assessments should be the U.S. 
commercial aviation system. . . . At a minimum, this should include 
any vulnerabilities at domestic airports associated with incoming inter-
national air cargo and passengers. . . .” Although ambiguities and 
inconsistencies in security practices among different countries make it 
difficult to estimate the magnitude of this shortcoming, the fact that so 
much of the known aviation security risk in the United States is from 
international flights indicates that the security of international flights 
must be accurately modeled in RMAT. This gap was previously identi-
fied by TSA and Boeing, and efforts are under way to extend RMAT 
to include international air travel.
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Credentials Are Always Required 

A third general assumption in the defender system design is that valid 
credentials are required to move within the world. Consistent with this 
assumption, RMAT does not include any attack pathways in which red 
agents attempt to enter world locations without the proper credentials.

In reality, expert feedback on credential validation procedures, 
along with recent revelations about the frequency of unauthorized 
entries into restricted areas, suggest that credentials are not always 
necessary to enter some critical areas. Security experts noted that the 
air operations area (AOA) boundary on an airfield is typically just a 
line painted on the pavement and is often unmonitored. This provides 
relatively easy access to the AOA from adjacent airfield areas, such as 
freight-processing facilities or general aviation areas. In addition, Stoller 
(2011) reports that a DHS review found that there have been 14,000 
documented cases of unauthorized access to “limited access” areas of 
U.S. airports, including nearly 5,000 unauthorized entries to the ster-
ile area, or AOA, since 2001. In not modeling the ability to access 
areas without credentials, RMAT is not capturing some feasible attack 
pathways that exist in the real world. This also fails to satisfy part of 
Requirement 11, which specifies that risk assessments should account 
for “unauthorized access to secure airport areas.” We return to this 
point in the “Pathways” section below.

Blue Agent Skill Levels Are Uniform 

A final general assumption about the defender model in RMAT that 
warrants comment is that all individual blue agents of a particular 
agent type have the same skill level in any individual Monte Carlo 
run. This means, for example, that all transportation security officers 
(TSOs), whether operating metal detectors, X-ray machines, or con-
ducting any other TSO activity, are represented as having the same 
skill level. Agent skill level is an important parameter in many of the 
detection probability functions, and allowing it to vary could influ-
ence RMAT results. In a simple two-layer security system in which the 
probability of detection is a constant linear function of agent skill level 
(i.e., probability = k*skill), it can be shown that the net probability of 
detection through the two layers when agent skill levels are uniform 
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is always less than that when the average skill level across agents is 
unchanged but skill levels among individual agents is allowed to vary.2 
Under such conditions, the assumption of uniform skill level would 
systematically bias the probabilities of detection lower, leading to an 
underestimate of the actual effectiveness of the defender system. Note 
that the skill level for each agent type is drawn from a distribution in 
each Monte Carlo run. So the average skill level in an RMAT simula-
tion consisting of a large number of Monte Carlo runs does reflect a 
range. The concern with using uniform skill levels in each Monte Carlo 
run is that detection probabilities in each run may be slightly low, lead-
ing to lower detection probabilities overall. Since this value cannot be 
varied in the current model configuration, it is difficult to assess the 
magnitude of this effect.

In practice, layers are not identical to each other, and the relation-
ship between detection probability and agent skill level for different 
layers is not necessarily constant. Consequently, the effect of varying 
skill levels among agents depends on the details of the relationships 
and may lead to an underestimation of detection probabilities. None-
theless, it is clear that varying agent skill level does influence detection 
probabilities whenever multiple layers act on a single person or object. 
In neglecting this variation, RMAT may be misrepresenting risks.

World Analysis

We validated the RMAT representation of the aviation system. We 
also considered whether relevant aviation system characteristics are not 

2 If P1 is the probability of detection at layer 1 and P2 is the probability of detection at layer 
2, then the total probability of detection through both layers, PT = 1 – (1 – P1)(1 – P2) = 1 – 
1 + P2 + P1 – P1*P2 = P1 + P2(1 – P1). If P = kS, where S is agent skill level, then this can be 
rewritten as PT = k[S1 + S2(1 – kS1)]. Further, if the average skill level across all agents is S, 
then (S1 + S2)/2 = S. Combining these gives PT = k[S1 +(2S – S1)(1 – kS1)] = k(2S – 2S kS1 
+ kS12). When the skill levels at layer 1 and layer 2 are equal to the average value, S, then  
S1 = S2 = S and PT* = k[S + S(1 – kS)] = k(2S – kS2), where the asterisk indicates the case 
where skill levels are equal. Taking the difference between the two expressions for total prob-
ability gives PT – PT* = k(S2 – 2SS1 + S12) = k(S – S1)2. Because this is a squared term, it is 
always positive, indicating that the total probability when individual layer probabilities are 
different from each other is always greater than when the individual layer probabilities are 
uniform.
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included in RMAT. This validation was based on a combination of air-
port planning and design guidance (Transportation Research Board, 
2010; Kazda and Caves, 2007), aviation security guidance and proce-
dures (TSA, 2006a, 2006b, 2008b, 2009c, 2011), and subject matter 
expert input.

Our validation found that, for the most part, the world char-
acteristics as modeled in RMAT simulate the actual aviation system 
well. We also identified errors in how employee screening is modeled, 
though we expect that these errors would not have a significant effect 
on model outcomes. We also identified a number of relatively minor 
errors and shortcomings that could influence outcomes in RMAT. 
TSA has requested that we not detail these errors in this report. 

RMAT represents “employee screening” through which all 
employees with access to the sterile area must pass. The employee 
screening process in RMAT is less thorough than for passenger screen-
ing. People are screened with a hand-held magnetometer instead of a 
walk-through metal detector or body scanner, and carry-on bags are 
screened with a hand-held explosives trace detector instead of X-ray 
and (nonportable) ETDS.

Security experts indicated that the actual employee screening 
process differs in two important ways. First, there is rarely a separate 
employee screening checkpoint; employees and passengers usually pass 
through the same screening checkpoint and are subjected to the same 
screening procedures. Second, not all employees with access to the ster-
ile area are screened. Flight crews and tenants using retail space in 
the sterile area are screened. However, all other employees with access 
to the sterile area are exempt from security screening. This includes 
security staff (TSA, airport, local law enforcement, private security), 
government employees, airport managers, gate agents, facilities staff, 
cleaning crews, maintenance workers, and outside contractors.

Although important in terms of deviating from reality, this dis-
crepancy affects only employees accessing the sterile area through the 
terminal. It does not affect workers accessing the AOA from the street, 
such as those involved in aircraft or ground maintenance, construc-
tion, freight processing, catering, or emergency response, all of which 
RMAT correctly models as not being screened. Because many employ-
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ees have access to the sterile area with no screening, any of the insider-
assisted attacks can be correctly simulated assuming no employee 
screening. Consequently, inaccuracies in how RMAT models screen-
ing of employees entering the sterile area through the terminal prob-
ably have little or no effect on model outcomes.

Weapon-Target Pairings and Attack Pathways

RMAT is designed to allow for new weapon-target pairings (attack 
types) and attack pathways to be introduced as needed. We evaluated 
the current suite of attack options, which chiefly represent data inputs 
to the model. The selection of weapon-target pairings and available 
attack pathways considered in RMAT is based primarily on the views 
of subject matter experts and the historical record of successful, failed, 
and planned attacks on the aviation system. RMAT has several broad 
categories of attack:

•	 hijack an airplane and crash into a building
•	 place a bomb on an airplane
•	 carry out a stand-off attack on plane (missile, rocket-propelled 

grenade [RPG], or high-caliber rifle)
•	 detonate a truck bomb against a plane at the gate
•	 conduct a lobby attack (abandoned bomb in terminal, suicide 

bomb, truck bomb at curbside check-in, shooting).

Note that whether RMAT includes all feasible weapon-target 
pairings and attack pathways is more than a question of its simply 
being comprehensive. RMAT simulates risk to the entire aviation 
system, which includes the adversary’s ability to select the most attrac-
tive attack type. To the extent that plausible attack types are not made 
available to the adversary, the model will misrepresent risk by forcing 
the adversary to choose a nonoptimum attack type that will have greater 
or lesser attractiveness and consequences. Certainly modeling only one 
or two attack types would not realistically simulate the adaptability of 
an adversary. Of course, no model can hope to accurately characterize 
the entire spectrum of aviation security threats. But it is important to 
endeavor to include as much of the feasible range of options as possible.
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We validated the suite of attacks modeled in RMAT by solicit-
ing expert opinion about attacks included in RMAT and proposed 
alternative attacks not included in RMAT. Our validation found that 
the RMAT attack suite is in good alignment with views from security 
experts. Only a few proposed additions or changes were identified.

Each attack type requires a specific path to succeed. To verify that 
the paths represented in RMAT were comprehensive, we presented 
the paths for each attack type to subject matter experts and requested 
feedback.

Hijack a Passenger Plane. To hijack a passenger plane, RMAT 
assumes that the terrorist brings a weapon of some type on the plane. 
This requires taking a weapon through the checkpoint or having an 
insider provide the weapon to a passenger after the checkpoint. Experts 
commented that there was no need to use a weapon for a hijacking 
because it is possible to construct a weapon out of objects in the plane 
(e.g., make a blade from a soft drink can, wine bottles, coffee pots, fire 
extinguishers). If an external weapon is not needed, then RMAT incor-
rectly overestimates the benefit of improved passenger screening on 
decreasing the hijacking risk. It seems likely that the truth lies some-
where in between—external weapons are not necessary but would be 
more effective. RMAT could include a separate version of the hijacking 
scenario in which the adversary does not bring a weapon on board but 
rather uses an object on the plane as a weapon.

Experts also noted that, regardless of what weapon is used, the 
most important “weapons” in the 9/11 attacks were surprise and easy 
access to the cockpit, both of which are gone now. RMAT accounts 
for this by granting passengers and crew some chance of subduing a 
hijacker and of hijackers’ penetrating the cockpit.

Experts also noted that it is possible for insiders themselves to 
board planes and take an empty seat. This would not differ signifi-
cantly from an insider passing a weapon to a passenger, however, so 
probably would not affect the accuracy of RMAT.

Finally, RMAT does not include a pathway in which an adversary 
bypasses the passenger-screening checkpoint by entering the sterile area 
through the sterile area exit lane. Experts had mixed perceptions on the 
possibility of this pathway. One claimed that such a pathway is very 
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vulnerable in certain airports where visibility is poor in crowded condi-
tions and cited examples of this occurring, both accidentally and delib-
erately. Another felt this was not a significant vulnerability. A recent 
report (Stoller, 2011) indicated that this does occur, and hence neglect-
ing it is a possible deficiency.

Hijack a Freight Plane. RMAT assumes that to hijack a freight 
plane, the terrorist must have insider access. Experts felt that this was 
an accurate assumption and noted a case when this happened in the 
past with a disgruntled employee. They felt that this was a particularly 
high risk, given that crews are not screened, and that it would be rela-
tively easy to subdue any interference from the small number of people 
on a freight plane.

Place a Bomb on a Passenger Plane. In RMAT, a bomb can be 
placed on a passenger plane by smuggling the bomb (or components) 
through the checkpoint, having it delivered to a passenger in the ster-
ile area by an insider, hiding it in checked luggage, or hiding it in 
freight. Bomb components entering the passenger compartment could 
be delivered by an insider or taken through a checkpoint and assem-
bled before boarding or even on the plane.

Experts confirmed these pathways but identified two additional 
pathways for a bomb to reach an airplane. The first is to deliver a 
bomb to the aircraft belly—either as luggage or as cargo—by someone 
coming from a shared aviation facility with easy access to the AOA. 
Experts noted that many airports have military, other government (e.g., 
U.S. Forest Service), general aviation, and freight facilities adjacent to 
the commercial AOA. In many cases, the only barrier to the commer-
cial AOA is, as noted previously, a line on the tarmac. An unscreened 
adversary could transport a bomb from one of these adjacent areas to 
a baggage or cargo tug or directly onto a commercial airplane. Experts 
viewed this “backdoor” pathway as high risk. Although similar to some 
insider-assisted attacks, this pathway differs in that is does not depend 
on any insiders but does require unauthorized access to the AOA.

The second pathway entails smuggling a bomb into the sterile area 
in vendor merchandise. An adversary could take a job with a supplier 
or delivery company that provides merchandise to shops or restaurants 
inside the sterile area and smuggle a bomb into a package. An accom-
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plice in the sterile area could then retrieve the package and carry it onto 
a plane.3 While merchandise entering the sterile area is required to be 
screened, not every individual item is X-rayed or hand-searched. For 
example, “factory packaged” items are not opened. Experts empha-
sized that this was also a high-risk pathway.

Place a Bomb on a Freight Plane. In RMAT, a bomb can reach a 
freight plane either by being in shipped freight or by being placed by 
an insider. Experts thought these paths were complete and accurate.

Attack with Stand-Off Weapons. RMAT includes attacks on air-
planes from missiles, RPGs, and high-caliber rifles, together referred to 
as stand-off weapons. Stand-off weapons are assumed to be fired from 
an off-airport location. RMAT does not have any security barriers for 
a stand-off weapon attack on an airplane. Experts considered this to be 
accurate. 

Use a Truck Bomb Against a Plane at the Gate. RMAT models a 
fuel truck being used as an incendiary truck bomb against an aircraft 
by an insider. Experts believed this to be an accurate and representa-
tive path.

Conduct a Lobby Attack. In RMAT, the lobby can be attacked 
by means of an abandoned bomb, a truck bomb, a suicide bomb, and 
light automatic weapons. Experts thought these paths were complete 
and accurate.

Create Diversions. RMAT does not include any type of diver-
sion tactics to help facilitate an attack. The subject matter experts felt 
that deliberate diversions (e.g., climbing or driving through a perim-
eter fence, starting a fight, setting off a fire alarm) are an important 
vulnerability in that they could decrease the effectiveness of blue sys-
tems. Diversions could provide another effective path for many of these 
weapon-target pairs. On the other hand, diversions may increase the 
alertness and raise the vigilance of blue agents.

3 This differs from the insider-assisted attack currently in RMAT in that in the RMAT 
version the insider is an airport or airline employee, who is subject to a background check, 
whereas in this version the employee is unaffiliated with the airport or airlines. 
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Weapon-Target Pairings Not Included in RMAT

We also asked experts about possible weapon-target pairings that are 
not included in RMAT. Additional weapon-target pairings were com-
piled from various sources, including TSSRA, Aviation Model Risk 
Assessment, and other sources. Experts were asked to comment on the 
relevance of these additional weapon-target pairings relative to those in 
RMAT, as well as on whether there were any other weapon-target pair-
ings that they felt should be considered. 

The results of this exercise identified a small number of scenarios 
that should be added to those in RMAT, either because they are con-
sidered important threats in TSSRA or because the experts with whom 
we consulted suggested that they represented important risks. As these 
scenarios represent potential system vulnerabilities, TSA requested that 
we not identify them explicitly in this report. 

Attack Consequences

Each attack type modeled in RMAT has associated with it particular 
consequences (also referred to as effects). Attack consequences are used 
in RMAT in two ways. First, the adversary uses estimates of conse-
quences as part of its computation of the attractiveness of different 
types of attacks. Second, the change in consequences resulting from a 
decrease in the probability of success is used as the measure of benefit 
when assessing the effectiveness of alternative security options.

Consequences in RMAT consist of three main components: 
deaths, direct dollars, and indirect dollars. Direct dollars include 
property damage, which consists of airplanes, buildings destroyed by 
hijacked airplanes, and aviation infrastructure destroyed by airport 
bombings, plus short-term business loss from aviation system shut-
downs. Indirect dollars are intended to reflect the long-term losses 
from decreased commercial aviation business.

RMAT simulates separate consequence values for different 
attack outcomes. For example, a hijack may not result in the intended  
building-impact, but the plane and its passengers may still be lost. In 
this case, the deaths of building occupants and the building value are 
not included in the consequence estimate. Similarly, in cases where an 



RMAT Defender Model    49

airplane survives a bomb or stand-off attack, few deaths occur and the 
airplane losses are less than that for a total loss.

In RMAT, the defender’s and adversary’s estimates of conse-
quences differ from each other. Specifically, the adversary values prop-
erty at the replacement value, and the defender uses a substantially 
depreciated property value. We are not aware of any convincing sup-
port for such an assumption, but at the same time there is no reason 
to believe that defender and adversary valuations should necessarily be 
equal. Further, the importance of consequences is in distinguishing the 
relative attractiveness of different planned attacks and the relative loss 
from different completed attacks. To a first approximation, changing 
attractiveness values for all attacks uniformly would not change the 
relative attractiveness of individual attacks, nor would changing loss 
values for all attacks uniformly change the relative loss of individual 
attacks.

In addition, the adversary’s perception of the indirect costs of an 
attack is higher than that of the defender. The rationale for the higher 
value is to capture the impact of the attack beyond the commercial 
aviation system and to reflect the adversary’s desire to inflict damage 
on the wider society. For deaths and losses from short-term aviation 
system shutdown , the adversary values are equal to the defender values.

We validated consequence values in RMAT at two levels. The first 
was to assess whether consequence components included in RMAT are 
appropriate and complete. The second was to assess the accuracy of 
consequence values.

Consequence Components

In considering deaths, property loss, short-term business interruption, 
and long-term business losses, RMAT simulates most of the major cat-
egories of consequences expected from terrorist attacks on the aviation 
system.

The only relevant consequence category we identified that is not 
captured in RMAT is nonfatal injuries. Injuries in terrorist attacks are 
clearly an important consequence in terms of response operations, care 
and recovery needs, and psychological impacts. However, as discussed 
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below, our analysis suggests that including injuries would have only a 
minor impact on the monetary consequences.

The consequences from injuries depends on the number of inju-
ries anticipated and the monetized value of those injuries. Wilson et al. 
(2007) report that the average numbers of fatalities and injuries for all 
terrorist attacks in the RAND–Memorial Institute for the Prevention 
of Terrorism (MIPT) Terrorism Incident Database are approximately 
1.5 fatalities and 3.4 injuries per attack, or about two injuries for each 
fatality. Terrorist attacks on the aviation system differ from terrorist 
attacks overall in that they tend to be more catastrophic, resulting in 
higher ratios of fatalities to injuries. For example, a successful bombing 
of an airplane will generally kill all aboard and injure few. To explore 
the potential impact of including injuries on RMAT results, we assume 
that there is one injury for every fatality.

For the monetary value of nonfatal injuries, we draw on an analy-
sis by Willis and LaTourrette (2008) who estimated the distribution 
of terrorist attack injuries by severity and several alternatives for mon-
etizing those injuries. As with the estimate from Wilson et al. (2007), 
this analysis was for all terrorist attacks. However, it is less obvious 
that the distribution of injury severity for aviation attacks will differ 
significantly from that for average attacks, so we make no adjustment. 
Using injury severity classifications adapted from the workers’ compen-
sation insurance industry, Willis and LaTourrette (2008) found that 
injury severity distributions were strongly skewed, with a peak at minor 
injuries and decreasing proportions for increasingly severe injuries: 85 
percent medical only, 9 percent temporary total disability, 3 percent 
minor permanent partial disability, 2 percent major permanent partial 
disability, and 1 percent permanent total disability.

Using different health valuation methods, Willis and LaTourrette 
(2008) developed three sets of costs for each injury severity. Applying 
the method with the highest cost values to the above severity distri-
bution gives a cost of $73,000 per injury. This is just 1 percent of the 
monetary value for fatalities used in RMAT ($7,000,000). Further, for 
most attack types, deaths are a relatively small fraction of total attack 
consequences. If there is one injury for every fatality, including injury 
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costs increases total consequence values by at most 1 percent and much 
more typically by 0.1 percent to 0.2 percent.

Consequence Values

RMAT consequence estimates were validated by comparing them to 
estimates derived from the literature. Some values, such as the list price 
for commercial airplanes, are simple to verify. Others were more diffi-
cult and for several of the consequence components we were unable to 
find independent estimates. 

Property. The airplane values require little discussion. We con-
firmed the values in RMAT by checking Boeing list prices (Boeing, 
undated). The only difference is in the value of the 747 freighter, which 
is about 14 percent higher than the value used in RMAT. This dif-
ference may reflect a difference in airplane configuration or a price 
increase since the RMAT consequence values were last updated. 
Although actual sales prices may differ from list prices, we do not con-
sider such differences materially important for RMAT model results. 
We were unable to find estimates of losses to airplanes damaged (but 
not destroyed) by bombs or stand-off weapons, though RMAT esti-
mates of these costs all seem plausible. 

The value for a building destroyed by hijacked airplane used as a 
weapon in RMAT is consistent with our independent estimate. Car-
roll et al. (2005) compiled the insured value of buildings plus contents 
for the 454 largest office buildings in the U.S. These values range from 
$160 million to over $2,800 million with a mean of about $600 mil-
lion. An iconic building in a major metropolitan area was valued at 
$2,668 million. Thus, the RMAT value is broadly consistent with Car-
roll et al. (2005).

We were unable to find independent estimates for property 
damage from terrorist bombing or shooting attacks. RMAT uses the 
same airport infrastructure property loss estimate for an abandoned 
bomb in an airport terminal, a curbside truck bomb, and a truck bomb 
against aircraft at gate. It is our judgment that the loss from a terminal 
bomb would typically be considerably less than that for truck bomb 
attacks. While the magnitude of property damage from a bombing 
will depend on many factors, one very important factor is the amount 
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of explosive used. A truck bomb can contain a much larger quantity 
of explosives and is therefore expected to cause much greater property 
damage, even accounting for the fact that it is detonated outside the 
terminal.

Deaths. The value used in RMAT for a death caused by a terror-
ist attack ($7 million) is consistent with the most recent estimates for 
the “value of a statistical life” reported by Viscusi (2008). The value of 
a statistical life is derived from studies of peoples’ willingness to pay 
for lower fatality risks, which is the preferred method for valuing lives 
for the purposes of government regulatory analysis (Office of Manage-
ment and Budget, 2003). A complication with the willingness to pay 
method is that peoples’ perception of risk depends on the details of the 
risk being considered. For example, people perceive relatively higher 
risks from events that are dreaded, unfamiliar, or beyond their control 
(Slovic, 1987). Thus, people are willing to pay more to reduce some 
types of risks and hence place a higher value on a statistical life for 
those risks. In particular, there is evidence that the appropriate value of 
a statistical life for deaths caused by terrorism is higher than for other 
risks, perhaps as much as twice the current $7 million value (Robinson 
et al., 2010; Viscusi, 2009). Deaths constitute a substantial fraction of 
total consequences in RMAT (between about 10 percent and 35 per-
cent for most scenarios), and hence doubling the value for deaths would 
have a significant impact on RMAT outcomes.

The number of deaths in destroyed airplanes is consistent with 
the capacities of the planes (occupied at 80 percent of capacity). We 
could not find independent estimates of the numbers of deaths associ-
ated with partial successes, though find no reason to believe the values 
in RMAT are incorrect. The number of deaths in a building destroyed 
by a hijacked airplane (780) is within the range for buildings com-
piled by Carroll et al. (2005; 500–2,600), although it is low relative 
to the number expected for a $2,000 million building. A more appro-
priate number of deaths for such a building would be approximately 
1,500–2,000 if all occupants were lost in the attack. As seen on 9/11, 
many occupants can survive building attacks, however. Therefore, the 
RMAT estimate is plausible but not subject to rigorous validation.
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Our validation suggests that RMAT may overestimate the num-
bers of deaths for airport attacks. Although the variation in numbers 
of deaths from terrorist bombings is large, historical analyses find that 
suicide bombings typically kill fewer than ten people (LaTourrette et 
al., 2006; Hiss and Kahana, 1998), far less than the RMAT estimate 
of 50. Similarly, abandoned bombs have historically killed about five, 
even when considering only bombings that resulted in at least one 
injury (Bogen and Jones, 2006). Vehicle bombs may be more lethal 
(average of 36 fatalities per incident; LaTourrette et al., 2006). Finally, 
despite such high-profile examples as the 2008 Mumbai attack, terror-
ist shootings typically kill one or two victims (Bogen and Jones, 2006; 
LaTourrette et al., 2006). These historical observations are factors of 
5–20 less than the RMAT estimates. Consequently, we find that the 
estimated numbers of deaths in RMAT in terminal attacks are unrea-
sonably high.

Short-Term Shutdown of National Commercial Aviation System. 
The cost per day to the aviation industry of a complete shutdown of the 
commercial aviation system in the United States can be estimated from 
revenue lost from passenger airfares and air freight fees. There were 620 
million passenger enplanements, equivalent to 310 million round-trips, 
on commercial aviation flights in 2010 (Bureau of Transportation Sta-
tistics, undated-a). This equates to 849,000 round-trips per day. At an 
average airfare of $337 per round-trip in 2010 (Bureau of Transporta-
tion Statistics, undated-a), this comes out to $286 million per day. 
There were 23 million tons of air cargo shipped on U.S. air carriers in 
2010 (Bureau of Transportation Statistics, undated-b), or 126 million 
pounds per day. At an average freight fee of about $2 per pound (UPS, 
2011), this comes out to $252 million per day. Summing passenger 
and freight losses gives $538 million per day, remarkably close to the 
RMAT value of $525 million per day.

The number of days that the U.S. commercial aviation system 
might be shut down after an attack can be estimated from the experi-
ence of the 9/11 attacks, in which the system was shut down for three 
days. If we assume that the shutdown duration scales linearly with the 
number of parallel attacks, this gives a shutdown duration of one day 
per parallel attack. RMAT uses half of this value for hijackings and 
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lower values for bombing and stand-off weapon attacks. Although 
these values are lower than experienced on 9/11, other incidents, such 
as the 1988 bombing of the Pan Am flight over Lockerbie, Scotland, 
resulted in no shutdown. Given the very limited experience with avia-
tion system shutdowns, there is tremendous uncertainty about what 
will happen in the future. Consequently, the values used in RMAT 
appear appropriate.

Long-Term Indirect Losses. The indirect losses in RMAT are 
intended to represent long-term losses in passenger revenue resulting 
from the ensuing decline in enplanements caused by a terrorist inci-
dent. The basis for this decline is the behavior observed after the 9/11 
attacks, which resulted from a combination of fear and aversion to the 
increased security burdens following the terrorist attack (Peterson et 
al., 2007). As with direct losses, indirect losses in RMAT are accrued 
per parallel attack. In cases of multiple parallel attacks, the total indi-
rect loss is the sum of the individual parallel attack values up to a 
maximum of four times this value for four or more parallel attacks. The 
rationale for capping the indirect loss at four times the parallel attack 
value is that with four attacks, the shock value and associated indirect 
losses have been maximized.

Conceptually, it is plausible that indirect losses would initially 
scale with parallel attacks and then decouple from them at some point. 
Nonetheless, capping indirect losses at the particular value of four is an 
arbitrary artifact of the 9/11 attacks, which happened to consist of four 
parallel attacks. Because indirect losses are so large and dominate total 
losses, the difference between capping indirect losses at four parallel 
attacks and, say, three or five parallel attacks would be quite substan-
tial. Indirect loss is therefore very sensitive to the number of parallel 
attacks at which it is capped, and RMAT outcomes could differ sig-
nificantly if this value were changed. Given that there is no compelling 
case to set this cap at four, a more defensible modeling approach would 
be to assign this value for each Monte Carlo run by drawing from a 
distribution that spans a feasible range of values.

For most types of airplane attacks, RMAT uses an indirect loss 
value of $11.1 billion per parallel attack, which is based on an esti-
mate of $44 billion for the 9/11 attacks (Korol, 2008). Other types of 
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attacks have lower values. We compared this $11.1 billion estimate to 
those of Gordon et al. (2007), who used a general equilibrium model-
ing approach to estimate the indirect loss over the two years following 
the 9/11 attacks. The analysis depends on some important assump-
tions, and they present multiple estimates using increasingly compre-
hensive assumptions. When considering only the loss from reduced 
airline ticket sales, they estimate a loss of approximately $42 billion. 
This gives an indirect loss of $10.5 billion per parallel attack, which 
agrees well with the RMAT value. When also accounting for losses to 
ground transportation, lodging, food, gifts/shopping, and amusement 
plus a 5 percent increase in telecommunications spending associated 
with each forgone airplane trip, the estimate rises to $145 billion, or 
$36 billion per parallel attack. When including losses to suppliers and 
vendors in the associated expenditure sectors, the estimate rises further 
to $253 billion ($63 billion per parallel attack). Finally, when consider-
ing reduced spending by households with members employed in any of 
the directly or indirectly affected industries, the losses amount to $399 
billion ($100 billion per parallel attack).

To the extent that the indirect losses in RMAT are intended to 
reflect losses only to the commercial aviation industry, the values are in 
good agreement with the results of Gordon et al. (2007). At the same 
time, it seems clear that indirect losses are not restricted to the com-
mercial aviation industry, and when considering other losses associated 
with reduced flying, the indirect loss estimates could be as much as a 
factor of 10 greater. This is a parameter that should be treated as subject 
to considerable uncertainty, and the implications of different ranges of 
values for model results should be explored.

On the other hand, an important shortcoming of the Gordon 
et al. (2007) analysis is that it neglects nearly all substitution effects. 
That is, aside from a small increase in telecommunications spending, 
it assumes that income lost from the decrease in commercial airline 
business completely disappears rather than some of it getting shifted 
elsewhere in the economy. This type of substitution is well known to 
economists and is an important reason that large, economically diverse 
nations are able to withstand and recover from large economic shocks 
(e.g., Sandler and Enders, 2008; Frey, Luechinger, and Stutzer, 2007). 



56    Modeling Terrorism Risk to the Air Transportation System

Because such effects span multiple sectors across the economy, they 
are difficult to observe and estimate. Rose et al. (2009) developed a 
general equilibrium model that accounts for cross-sector substitution 
to estimate the indirect losses from the 9/11 attacks. They find that  
the total business interruption loss to the U.S. economy was just over 
$100 billion, which is far less than the $400 billion estimate by Gordon 
et al. (2007). Our understanding is poor of how spending in response 
to disasters shifts and substitutes among sectors, and uncertainties are 
great. Although the magnitude of such effects is poorly constrained, it 
is clear that actual indirect losses must consider both losses and gains 
to affected industries and sectors. 

In neglecting losses beyond airfares associated with reduced com-
mercial air travel, RMAT underestimates indirect losses. In neglecting 
substitution effects, RMAT overestimates indirect losses. The magni-
tudes of these effects are unknown, but given the magnitude of indirect 
losses overall, they are expected to be substantial. Consequently, there 
is great uncertainty in the consequence estimates in RMAT and these 
warrant more exploration in terms of their impact on model outcomes.

Defender Model: Satisfaction of TSA Requirements

As discussed in Chapter One, the various stakeholders in aviation secu-
rity have several overlapping sets of requirements for aviation security 
risk analysis. Five of these are high- or medium-priority requirements 
that the RMAT defender model might address. Table 3.1 summarizes 
RMAT usefulness in meeting these requirements.

Requirement 3, stipulating how risk should be conceptualized, 
is partially satisfied. Attack consequences are quantified in terms of 
deaths, direct economic losses, and indirect economic losses. However, 
RMAT does not define an explicit time period over which expected 
losses apply. Rather, it simulates a single attack attempt, and the time 
period required for this attack varies from case to case. Furthermore, 
time in the model is not calibrated to be representative of time in the 
real world. Hence, RMAT provides estimates of the relative likelihoods 
of different attack types conditional on an attack occurring, but it is 
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not designed to express probability or losses in the conventional units 
of incidents or expected losses per time interval.

Requirement 10, which concerns the scope of vulnerabilities 
considered by risk analyses, is partially satisfied. In general, RMAT 
faithfully simulates the characteristics of the U.S. commercial aviation 
system; the procedures, staffing, and instrumentation used to secure 
it; and the major vulnerabilities to it. We identified several correctable 
errors in the world representation, most of which are minor and are 
expected to have little impact on model outcomes. However, because a 
large part of the aviation security threat stems from U.S.-bound inter-
national flights, the fact that RMAT does not simulate security on 
such flights is an important shortcoming.

Requirement 11 concerns the threats considered in risk analy-
ses. We find that this requirement is partially satisfied. RMAT simu-
lates most, but not all, of the security threats described in the TSSRA. 
TSSRA, for instance, counts chemical and biological attacks as high-
risk scenarios, but these are not included among the current set of 
RMAT attacks. Further, some important attack pathways are not 
included, such as unauthorized access to secure areas and some high-

Table 3.1  
RMAT Defender Model Satisfaction of Associated TSA Requirements

Requirement Short Description
RMAT Satisfaction 

of Requirement

3 Risk should be specified as the product 
of adversary success probability and 
consequences over some time period.

Partial

10 Risk assessments must identify 
vulnerabilities associated with portions 
of the domestic, commercial air 
transportation system.

Partial

11 Risk assessments should represent threats 
described by TSSRA and others.

Partial

13 Risk assessment methods should describe 
the risk benefits of existing and planned 
security systems.

Yes 

14 Risk assessments should account for 
performance heterogeneity in security 
systems.

Partial 
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risk insider-assisted pathways. By failing to include these pathways, 
RMAT may underestimate the risk of a bomb attack on an airplane. 

Requirement 13 calls for methods to estimate the risks and ben-
efits associated with new or candidate security procedures. RMAT has 
been designed to produce such estimates, and we consider the validity 
of those estimates elsewhere, so we consider this requirement to have 
been met. RMAT accounts for the combined security operations of 
multiple organizations and is consistent with most plans, programs, 
policies, and procedures. In addition, RMAT accounts for the cumu-
lative effects of multiple security measures operating simultaneously. 

Requirement 14 notes the importance of risk analysis acknowl-
edging heterogeneity in defender performance. Heterogeneity result-
ing from partial deployment of security measures can be addressed 
by allowing the user to select the probability that an adversary will 
encounter a particular measure during reconnaissance and attacks. 
Also, RMAT does allow blue agent skill level to be varied among agent 
types and from one Monte Carlo run to the next, but it does not allow 
heterogeneity in skill level among blue agents of a given type within a 
single run. Such intrarun heterogeneity can influence model outcomes.

Recommendations for Revisions to the RMAT Defender 
Model

In general, RMAT has an accurate representation of airport secu-
rity processes, but some improvements could further strengthen the 
RMAT characterization of air transportation system risks. 

Address differences in security screening between domestic and for-
eign airports. RMAT currently models security using a single abstrac-
tion of the U.S. commercial aviation system. Consequently, it does 
not capture differences in security among different airports. One of 
the most important of these differences is that between domestic and 
foreign airports. Aviation systems of other nations do not conform to 
the same security standards as those in the United States, and secu-
rity may differ from country to country. Given the current structure 
of RMAT, accounting for security differences at foreign airports may 
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not be straightforward. One possible approach would be to distinguish 
separate attack types for international flights that use distinct instru-
ments, staffing, and parameter values relevant to security at foreign air-
ports. TSA and Boeing recognize the importance of incorporating for-
eign flights into the domestic system and have plans to adapt RMAT 
to include them. 

Include attack pathways that exploit the probability that credentials 
will not always be checked. RMAT requires that agents always pos-
sess the necessary credentials to move within the world and does not 
include any attack scenarios that entail entering locations without the 
proper credential. However, our analysis revealed that there are attack 
pathways in which credentials are not always checked. Including such 
pathways, with the appropriate probability that a credential would be 
checked would strengthen RMAT.

Add additional attack scenarios. While RMAT has a wide vari-
ety of attack types, there are some that are high-priority threats in 
TSSRA that are not in RMAT. These should be added in order of per-
ceived importance. Additionally, we identified two other scenarios that 
should be considered for inclusion. The specifics of these scenarios are 
security-sensitive so are not described in this report. 

Decrease deaths for terminal attacks. Our validation found that 
RMAT may overestimate the number of deaths in airport terminal 
attacks. Judging by outcomes of past attacks, we find that the number 
of deaths in such attacks should be reduced by factors of 5–20.

Account for uncertainty in consequence values. Our validation iden-
tified some important uncertainties in the consequences from avia-
tion terrorism that are not adequately conveyed in the way RMAT is 
designed and how it handles uncertainty. One important uncertainty 
is the value of a statistical life. RMAT uses the currently accepted value 
of $7 million. However, emerging research suggests that the appro-
priate valuation of life associated with terrorism may be as much as a 
factor of two higher. Research in this area is ongoing and there is no 
consensus on the best value. Including an option to vary this value 
would allow users to examine the effect of differing assumptions.

There are other, more substantial, uncertainties associated with 
the indirect losses. The first has to do with the relationship between 
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indirect losses and the number of parallel attacks. The current assump-
tion that indirect losses do not increase with the number of parallel 
attacks beyond four parallel attacks, while plausible, is an arbitrary 
choice stemming from the 9/11 attacks. Varying the number of parallel 
attacks at which indirect losses are capped would influence the number 
of parallel attacks that is most attractive to an adversary and the total 
consequences for an attack. These changes would affect which attacks 
are attempted as well as the benefit of security measures that prevent 
them.

A second important uncertainty in estimating indirect losses is 
the amount of loss beyond airfares from forgone flights associated with 
a decline in commercial aviation business. The indirect loss in RMAT 
is intended to represent losses to the commercial aviation system, and 
our validation finds that the RMAT value of $11 billion is consistent 
with the decrease in airline ticket sales for the two years following 9/11. 
However, we also found that, when considering losses to service sectors 
associated with commercial aviation, airline tickets may represent as 
little as 10 percent of the total loss stemming from decreased air travel. 
Indirect losses could therefore arguably be as much as ten times greater 
than the RMAT estimate.

A final uncertainty that pushes indirect losses in the opposite 
direction is the extent to which other types of spending substitute for 
decreased spending from forgone air travel. Although there is reliable 
evidence that this substitution effect occurs, there is little empirical 
basis for estimating its magnitude. More research is needed to under-
stand how consumer spending shifts in response to fear, hassle, and 
other impediments to commercial air travel after terrorist attacks.

To some extent, these uncertainties could be characterized simply 
as limitations in available data, and users could explore a range of 
values for each uncertain parameter. However, our analysis suggests 
that consequence values will always be too uncertain to develop reli-
able or meaningful point estimates. As a result, we recommend that 
RMAT be revised to more explicitly incorporate uncertainty analysis 
in its architecture. 
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CHAPTER FOUR

RMAT Data Requirements and Sources

RMAT has thousands of input variables, which places heavy demands 
on the identification and validation of accurate parameter values quan-
tifying aspects of airports, security operations, terrorist operations, and 
attack outcomes and their valuation. To fulfill model data requirements, 
Boeing and TSA have undertaken extensive and repeated data collec-
tion efforts. These collection efforts have relied on elicitations with sub-
ject matter experts, assessments of technical and scientific data, review 
of TSA policies and procedures, and other data sources. Because the 
model, the system it describes, and threats to it are constantly evolving, 
the validity of RMAT results depends on the reliability and validity 
of ongoing data collection efforts. This chapter explores the validity of 
data sources used as inputs to the RMAT model, the rigor and reliabil-
ity of the data collection processes that have been used, and the compli-
ance of these processes with RMAT requirements. 

Quantity and Types of Data

RMAT includes input data that describe the adversary, blue agents, 
credentials, perception enhancers, materials, material detectors, weap-
ons, and attack types. Each of these broad categories contains specific 
types of objects and each type has many characteristics that are defined 
by inputs. These characteristics are similar for each type within a cat-
egory. In Table 4.1, we have tabulated by category the number of types 
and inputs per type. At the time of this study, there were 4,182 inputs 
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related to these categories, though this number will grow as RMAT 
adds more scenarios and aspects to the model.

Table 4.1 is only a partial count of the data inputs because there 
are other parameters that do not describe these broad classes of objects 
in the model. These other inputs include 161 inputs from a “configu-
ration constant” file. These additional parameters adjust some of the 
model functions. The configuration constants include both substantive 
assumptions about the system’s response and technical parameters with 
little impact on the results.

A conservative estimate for the number of inputs would be 4,343 
(4,182 + 161). In addition, however, there are numerous agent behaviors 
and parameters that have been hard-coded into the software, which 
could also be considered parameters subject to change. The RAND 
study team had only limited access to the code, so we could not deter-
mine how many such hard-coded parameter estimates there are. 

Table 4.1
Input Count for Model Objects by Category

Types
Inputs per 

Type Total

Adversary 3 114 342

Blue agents 35 9 315

Credentials 21 3 63

Perception enhancers 6 2 12

Materials 15 4 60

Material detectors 14 8 112

Weapons 88 26 2,288

Attack types 66 15 990

Total 4,182
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Validation

The scale of the data used in the model made a complete validation 
impossible within the project’s time line; instead, we used statistical 
sampling to draw inferences about the full set of input values, based on 
observations from a subsample selected probabilistically. Because of the 
large number of inputs for each adversary object, we randomly sampled 
from the adversary inputs instead of sampling from the objects them-
selves. The objects and parameters were weighted by their importance 
on the model’s output and then sampled randomly. Importance values 
reflected the frequency with which parameters were used in major 
RMAT functions. Using this weighted stratified sampling design, we 
sampled 130 inputs for in-depth validation. From a statistical stand-
point, this sample size provides better than a 95 percent chance of 
finding two or more invalid inputs if 5 percent or more of the inputs 
are invalid. 

Several of the selected parameters have been assigned values that 
are security-sensitive or not publicly releasable. Our validation efforts 
sought to confirm the legitimacy of these inputs too, though their 
values will not be discussed here. 

We considered diverse forms of evidence to validate the data, 
including logic, subject matter expert judgments, and literature 
searches. We could validate some parameter values on logical or defi-
nitional grounds. For example, nonmetallic knives are not explosive 
and need not contain any metal, so we could logically confirm values 
assigned to them on parameters describing their explosive force poten-
tial and their metal content (related to their detectability by magne-
tometers). For the other inputs, we searched relevant literature and con-
sulted with subject matter experts to validate the value. Subject matter 
experts included terrorism experts and airport security personnel. We 
sought manufacturer specifications, news reports, and peer-reviewed 
articles as literature sources. For some inputs, we could not find suf-
ficient information to confirm or disconfirm the RMAT value. The 
summary of these findings can be found in Table 4.2. We combined 
materials, material detectors, and perception enhancers together as 
equipment for the purpose of the validation. 
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Those parameter values for which we found neither confirming 
nor disconfirming evidence, we list in Table 4.2 as “unconfirmable.” In 
addition, however, we classed some variables as “not estimable,” when, 
in consultation with former intelligence analysts and aviation subject 
matter experts, we concluded that the information required to estimate 
the variable either does not exist or is subject to such profound sources 
of uncertainty that we judged they could not reasonably be estimated. 
Examples of such parameters include those used to estimate the terror-
ist’s perception of the diminishing returns on each additional paral-
lel attack, the parameter that dictates how rapidly the adversary can 
update its knowledge of security systems, and the parameters terrorists 
would apply to candidate attacks for purposes of judging their relative 
attractiveness. These and other RMAT parameters require information 
beyond what intelligence or academic research can credibly provide. 

Excessive reliance on parameters that are not measurable, par-
ticularly for parameters that have a strong impact on the results, can 
result in assumption-driven outcomes. These inputs should undergo 
extensive sensitivity testing so that their impact on model results is well 
understood and these uncertainties can be conveyed to policymakers.

Similarly, many parameters have a standard deviation as an input 
in addition to a mean value. This assumes a known distribution for the 

Table 4.2 
Independent Confirmation Results for Sampled Parameters

Total 
Sampled Confirmed Disconfirmed 

Not 
Estimable Unconfirmable

Adversary 20 11 4 0 5

Blue agent 18 12 0 6 0

Credentials 3 0 3 0 0

Attack types 30 12 0 4 14

Equipment 6 3 0 0 3

Weapon 52 35 0 3 14

Configuration 1 0 1 0 0

Total 130 73 8 13 36
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underlying parameter, which is not true for many of the inputs. When 
a distribution is not known, it is better to examine implications of the 
full range of plausible values, rather than sampling values from a pre-
sumed distribution. 

As shown in Table 4.2, we disconfirmed eight of the 130 values 
we sampled (7 percent of the data when scaled to the full data set as 
distributed in Table 4.1). Extrapolating from our sampling plan, we 
can infer with a 95 percent confidence interval that between 2 percent 
and 11 percent of all RMAT would be disconfirmable. Moreover, an 
additional 9 percent of inputs appear to serve parameters that are inher-
ently not estimable. This estimate would correspond to more than 600 
variables in RMAT that are disconfirmable or not estimable. Although 
it is true that the subject matter experts and intelligence analysts who 
provided the initial values for the disconfirmed variables may have had 
access to information that was unavailable to us, the detailed explana-
tion of why we classed these eight values as disconfirmed shows that in 
half the cases, the disconfirmed values are not ones likely to have been 
recommended by experts. 

Adequacy of Sources

The RMAT team described a hierarchy of sources for input values, 
with preference given to data from the Aviation Security Assessment 
Program (ASAP), a program that conducts systematic red team tests of 
airport security systems and laboratory test data. When these sources 
are unavailable, the team first considers published analysis and finally 
subject matter expert opinions. We asked Boeing and TSA to share 
documentation with us on the sources they relied on to arrive at the 
130 sampled values. Table 4.3 summarizes these sources. Roughly two-
thirds of the sampled inputs come from subject matter experts with 
the remaining split between the literature, test data, and inputs that 
control model functions but do not correspond to confirmable events. 
Examples of model parameters that reflect these expert judgments 
include characterization of the attractiveness of targets to adversaries, 
the skills of potential adversaries, the rate at which potential adversaries 
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can learn new information about security systems, and the effective-
ness of security measures at detecting and stopping attacks. 

Of the sampled inputs, the only category of input that was docu-
mented as having used any literature sources was the weapon class, and 
these inputs were primarily for detectability values from TSA data. 
All other variable estimates were attributed to subject matter experts, 
though in some cases these experts may have drawn on data sources. 
Moreover, we sampled from the common baseline parameters. For 
individual case studies, TSA reports incorporating all available data 
from relevant ASAP studies. Although none of the variables we sam-
pled were documented as coming from ASAP, the experts listed in the 
documentation may have drawn on their knowledge of ASAP data and 
other reliable sources. 

The heavy reliance on experts highlights the importance of exam-
ining the methods used to elicit their judgments. We do so in the next 
section by comparing how Boeing and TSA conduct elicitations to 
established best practices.

Table 4.3  
RMAT Sources of Data on Sampled Values

Inputs 
Sampled

Subject Matter 
Experts

Literature or  
Test Data

Not 
Applicable 
or Model

Adversary 20 15 0 5

Blue agent 18 18 0 0

Credentials 3 3 0 0

Effects 30 12 0 18

Equipment 8 5 0 3

Weapon 52 32 20 0

Configuration 1 1 0 0

Total 132 86 20 26
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How RMAT Uses Expert Elicitations

The RMAT team has incorporated multiple approaches to expert elici-
tation. Whereas a large number of values were elicited early in RMAT 
development to support the baseline case, subsequent case studies have 
required new elicitations that have used more sophisticated procedures. 

Boeing and TSA have conducted elicitations with TSA intelligence 
personnel to collect values associated with attacker characteristics and 
with aviation security personnel for values concerning the effectiveness 
of security measures. Though the experts represented a variety of per-
spectives, and often were well suited to provide needed judgments, in 
some cases they were selected based on availability rather than through 
a process that matched experts to stated criteria for expertise. In cases 
where external experts were either not available or could not be identi-
fied, the elicited estimates reflect the judgments of the Boeing and TSA 
RMAT modeling team that were subsequently reviewed and approved 
by at least one TSA official.

In some cases, elicitations have involved one-on-one discussions 
between a member of the RMAT team and a subject matter expert. 
When this approach was used, the number of experts interviewed 
depended on how many could be identified. When more than one 
expert was used and elicited results did not agree, the RMAT team 
reached an internal consensus to resolve the disagreement.

In other cases, elicitations were conducted in small groups or 
larger, more formal workshops. Each of these formats incorporated an 
opportunity for participants to discuss the estimates provided, and par-
ticipants were asked to develop a consensus judgment. In general, dis-
cussions were managed so that a single consensus estimate emerged, or 
an average estimate of the multiple views was calculated for the RMAT 
parameter. Elicitations related to the performance of technologies were 
generally one-on-one interviews, and those related to insight from the 
intelligence community were conducted as small groups or workshops. 

The methods used to elicit information at times involved offering 
a suggested response and asking the expert to comment on whether 
this was an appropriate judgment. According to discussions with TSA 
personnel and TSA support personnel, respondents were generally 
asked for their best estimates and were not always asked for bounds or 
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ranges for their estimates. Elicitation procedures have not usually been 
documented or standardized. 

In many cases, the RMAT team reports making efforts to assess 
the reliability of expert judgments. In some cases, for instance, indi-
vidual judgments were shared and discussed with other experts. These 
discussions influenced either which values TSA used in RMAT or how 
they combined estimates when multiple were elicited.

According to Boeing and TSA personnel, assessments performed 
earlier in the modeling process exhibited greater disagreement. This 
has been anecdotally attributed to disagreements stemming from vague 
and unclear wording of the elicitation questions. As elicitations contin-
ued, the RMAT team has improved the clarity of questions by docu-
menting additional process flows, standardized elicitation documents, 
allowing experts to express and assess contingent dependencies that 
affect their judgments, and more formally incorporated approaches for 
providing experts feedback on their assessments. However, the elicita-
tion processes and approaches to framing questions reportedly vary 
depending on the specific experts who are engaged.

Expert Elicitation Best Practices

Reliable expert elicitations generates well-calibrated and coherent esti-
mates (Hora, 2007a, 2007b; Morgan and Henrion, 1990). Calibration 
refers to the accuracy of estimates. Coherence refers to whether the 
estimates follow logic associated with either probabilistic relationships 
or membership of sets and subsets. Methods of expert elicitation use 
three approaches to ensure reliability. 

First, elicitation questions must be well specified. To the extent 
questions are vague, variation in interpretation by the experts leads to 
disagreement in judgments (Hora, 2007a). A common standard used 
to assess whether questions are well posed is the omniscience test; if the 
question were posed to an all-knowing person, would that person be 
able to answer the question as posed or would clarification be required? 
For example, if asked, “What is the average daily temperature?” the 
omniscient would need to clarify the where and when the questioner 
was referring to (e.g., last year’s global temperature). In theory, the 
omniscience test is sufficient to ensure that questions are well specified. 
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The question used in elicitations must also be one for which there 
is a basis for an estimate. Grounds for a reliable answer can be a strong 
understanding of the underlying phenomena or experience with prior or 
analogous problems, either of which would allow an expert to respond 
reliably. For example, it is likely impossible for an expert to assess the 
effectiveness of a technology that has not yet been developed, will be 
used in a process that has not incorporated other technologies, and is 
not well characterized by a process model. However, it is easier for an 
expert to assess a known technology in a new but similar application.

Second, care is given in the selection of appropriate experts. 
Experts tend to produce more reliable estimates when they have either 
analogous experience or fundamental knowledge and when they receive 
feedback on the coherence and calibration of the judgments they have 
offered (Morgan and Henrion, 1990). Thus, expert elicitation methods 
give a great deal of attention to the methods used to identify experts. 

Finally, gathering reliable expert elicitations requires framing 
questions to avoid the common judgment and decisionmaking biases 
of availability, overconfidence, representativeness, and anchoring and 
adjustment (Tversky and Kahneman, 1974).

Several protocols have been developed to achieve these outcomes 
and generally fall into two classes: individual elicitation methods and 
group processes.

Methods to elicit information from individuals. Several approaches 
exist for eliciting information from individual experts. Most were 
developed decades ago and have been applied to problems as diverse 
as setting air pollution standards (Wallsten and Whitfield, 1986), fate 
and transport of pollutants (Morgan et al., 1984), and energy facility 
reliability (Boyd and Regulinski, 1979). Although the details of each 
approach vary slightly, they each incorporate five similar steps: motiva-
tion, structuring, conditioning, encoding, and verifying. 

The first three steps—motivation, structuring, and conditioning— 
are intended to ensure that experts 

•	 understand the elicitation task 
•	 are asked questions that they are comfortable with and prepared 

to answer 
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•	 are aware of common biases and heuristics that could limit the 
coherence or calibration of the elicitations. 

The fourth task—encoding—involves eliciting information from 
experts, typically using elicitation tools and approaches designed to 
minimize the effects of heuristics and biases. Finally, the fifth task—
verification—provides a check on whether the results of the elicita-
tion accurately affect the experts’ views. This step frequently includes 
opportunities for experts to reflect on elicited results that disagree with 
other experts or reveal poor coherence or calibration and, if desired, to 
adjust their answers. Incorporating these tasks into individual elicita-
tion has been demonstrated to improve the reliability of resulting esti-
mates (Cojazzi et al., 2001). 

Methods for eliciting information from groups. In most problems 
of interest, experts will disagree about the value of uncertain quanti-
ties being elicited. For these situations, elicitation methods have been 
developed to characterize the range of opinions that exist. The rationale 
for eliciting from groups instead of individuals stems from the reasons 
that experts might disagree—of which there are several. 

Experts may have different awareness or understanding of the 
science or statistics involved in phenomena, even when questions are 
stated clearly and unambiguously. Ignorance or error could lead one 
expert to disagree with another. Moreover, multiple valid interpreta-
tions of the science can also lead to disagreement in cases where more 
than one model or theory exists to explain a phenomenon. Finally, per-
sonal incentives or interests may motivate bias in answers; that in itself 
generates disagreement. 

In each of these cases, interaction among groups can help to 
resolve disagreements either by clarifying the cause of the disagreement 
or by filling gaps in knowledge and clarifying misconceptions that the 
experts might have. Methods of incorporating group interaction into 
assessment include mathematically merging elicited results, face-to-
face group discussions such as focus groups, and Delphi-type interac-
tions that allow groups to discuss individual judgments (Morgan and 
Henrion, 1990). 
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Mathematical techniques, such as averaging elicited answers, 
are simple to implement and often effective at generating reliable esti-
mates. But in cases where more than one valid viewpoint exists, math-
ematical techniques can provide misleading results and can obscure 
the sources of disagreement (Morgan and Henrion, 1990). Face-to-
face group interactions offer experts an opportunity share information, 
question each other, and challenge each other’s ideas. This approach 
has been shown to improve the reliability of elicited results and moti-
vated Delphi-like approaches. However, group interactions are subject 
to known problems stemming from group dynamics when individual 
experts exert excessive influence or coercion over other participants 
leading to changes in elicited answers (Gustafson et al., 1973; Linstone 
and Turoff, 1975; and Myers and Lamm, 1975).

Other methods have been developed to achieve the benefits of 
group interactions while limiting the influence of persuasion and coer-
cion. Examples of these methods include the nominal group technique 
(Gustafson et al., 1973) and the deliberative method for ranking risks 
(Florig et al., 2001). These methods begin with methods of individual 
elicitation and then incorporate those into tasks involving moderated 
group interaction facilitated to minimize the opportunity for one indi-
vidual to dominate a discussion. Such approaches have been applied to 
health and safety risk, ecological and environmental health, and, most 
recently, homeland security risk management (Morgan et al., 2001; 
Willis et al., 2004, 2010; and Willis and Lundberg, 2011).

Comparing RMAT Elicitations to Best Practices

Comparison of the expert elicitation methods used in RMAT to best 
practices raises several concerns about the validity and reliability of the 
information contained in the RMAT model.

First, the RMAT team was not always given access to requested 
experts. Thus, the approaches used to identify and recruit experts 
appear to be driven largely by the availability of experts rather than by 
explicit criteria for the expertise sought and assessment of whether the 
individuals involved have the background and experience that would 
suggest they could be well-calibrated experts. Improved access and 
well-defined expert selection criteria would likely lead to requirements 
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to extend RMAT elicitations to expert groups beyond those already 
used. 

Second, the elicitation approaches used likely promote over-
confidence and anchoring. For example, in cases where experts were 
uncertain and reluctant to hazard guesses, facilitators would reportedly 
suggest a possible answer as a starting point for the elicitation. Fur-
thermore, elicitation approaches did not until recently attempt to elicit 
lower and upper uncertainty ranges for elicited parameters. Instead, 
early elicitations captured only point estimates, creating a false sense of 
precision where the true uncertainty range might support a wider range 
of results and conclusions. Elicitations reportedly now do attempt to 
capture lower and upper bounds. It will be important to ensure that 
elicitation procedures and results are formally documented. 

In cases where groups are used, reported processes do not  
mitigate unfavorable group dynamics. For example, our study team 
observed elicitations where group discussions were dominated by a 
single individual—one who had management responsibilities for the 
other experts. In this case, the dominant individual was offering a 
highly favorable assessment of the effectiveness of the security program 
he managed—an assessment substantially different from that offered 
by his employees when they were interviewed separately. Although the 
discussion process can lead to a better estimate than any one member 
would have produced, senior experts (in particular if they have a super-
visory role over other panel members) may have an undue influence 
over others.

Third, in cases where multiple experts were consulted, differences 
between their judgments were not recorded. Instead, the RMAT team 
used either mathematical approaches to aggregating experts’ opinions 
(e.g., averaging answers), forced consensus among experts (a process 
that raises concerns about group interactions), or made a reasoned 
judgment about which of several proposed parameter values to accept. 
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RMAT Data: Satisfaction of TSA Requirements 

Of the requirements identified for TSA risk assessments detailed in the 
appendix, one focuses on data validity and the data acquisition process 
(Table 4.4).

Requirement 19 emphasizes that RMAT data should be authen-
ticated and traceable. The sample validation indicates that a small pro-
portion of inputs to RMAT have values that are likely not correct. The 
sources of data values are reported, but there is little or no systematic 
process for maintaining additional documentation about the data col-
lection for specific inputs. This makes it difficult to audit the data for 
validation purposes. In the case of expert judgment data, the methods 
used do not conform to the best practices for expert elicitation, mean-
ing that they may be unreliably collected. Therefore, this requirement 
is only partially met.

Observations and Recommendations

RMAT uses thousands of inputs that are fed into various functions to 
provide assessments on terrorism risk. Roughly 7 percent of these vari-
ables may be incorrect, judging from the parameter values we sampled, 
and an additional 8 percent are not confirmable because the underlying 
attribute is not truly measurable as modeled. TSA and Boeing could 
implement several measures to improve the validity of model data. 

Document review and modification of data collection processes. To 
resolve problems with disconfirmed inputs, a time line should be estab-
lished to update each variable. Variables that change dramatically with 
additional information about current and evolving threats would need 
to be updated more frequently than variables that describe the phys-

Table 4.4  
RMAT Data Sources Agreement with Associated TSA Requirements

Requirement Short Description
RMAT Satisfaction of 

Requirements

19 Data supporting risk assessments must be 
authenticated and traceable.

Partial
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ics or chemistry underlying some of the processes. This would increase 
the likelihood that RMAT is relevant to the current decisionmaking 
processes.

Adopt empirical expressions of uncertainty. We considered many of 
the inputs that could not be confirmed to be highly uncertain and 
should be replaced with a distribution within some range of plausi-
ble values. Currently, for parameters that range between zero and one, 
RMAT uses a Gaussian noise with standard deviation of 0.2 to sample 
some of the variables. This asserts incorrect precision; the representa-
tion should be replaced by something more characteristic of actual 
uncertainty justifiable from the literature or subject matter estimates. 

Additionally, using a Gaussian distribution with standard devia-
tion of 0.2 inside a bounded region will skew the resulting distribution 
(unless the initial value is equal to 0.5). This effect will be magnified 
toward the edges, so that if a variable has a default value of 1.0, the 
resulting sample mean will be closer to 0.92. This means that any sen-
sitivity testing on the variables between zero and one will be biased. 
This is a substantive problem and can be addressed by making sure that 
the distribution used during the sensitivity analysis preserves the mean.

Avoid parameters that cannot in principle be estimated. Some key 
parameters are uncertain and cannot be avoided. That said, efforts 
should be made to minimize the number of immeasurable parame-
ters included in the model. Ideally, RMAT components that rely on 
immeasurable inputs could be redesigned to avoid the need for these 
inputs. For example, the abstract defender skill level is difficult to mea-
sure (if at all possible), but actual defender performance from red team 
tests may be available. Thus, the complex functions defining the prob-
ability of detection might be replaced with actual data. 

When parameters that cannot be estimated accurately are impor-
tant to the model’s conceptual validity, they should be treated as 
sources of deep uncertainty for the model’s results. These parameters 
should be subjected to exploratory modeling to understand how they 
affect outcomes in combination with other sources of deep uncertainty 
(see the discussion in Chapter Six). 

Align expert elicitation with best practices. By drawing on the best 
practices reviewed above, TSA could improve the elicitation methods 
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used in RMAT. Specifically, the RMAT processes could be modified 
to

•	 incorporate selection criteria and recruiting procedures for engag-
ing experts

•	 adopt and consistently use elicitation methods that mitigate the 
effects of judgment heuristics and biases and group dynamics

•	 represent the uncertainty that exists in elicited results and carry 
those uncertainties through to RMAT results.

However, before refining elicitation procedures, TSA should first 
consider how expert elicited values are used in RMAT. If the objective 
of RMAT is not to produce best estimates about future risks but rather 
to explore how different sources of uncertainty affect results, subject 
matter experts might be used to bound the plausible ranges on vari-
ables rather than to make point estimates. 

Even if elicited well, parameters related to attacker preferences, 
attacker capabilities, and security measure effectiveness will be subject 
to significant uncertainty. Elicited answers can therefore be expected 
to reflect wide variations in viewpoints. Moreover, these views may 
fluctuate abruptly when new information is obtained about the inten-
tions or capabilities of a particular individual or group. Thus, instead of 
considering these parameters as values to be estimated, RMAT could 
instead treat them as uncertainties to be analyzed through exploratory 
modeling. 

Seek opportunities to validate subject matter expert judgments with 
empirical data. TSA administrators should assist in giving access to 
the best available data sources and experts for RMAT refinement. Too 
few of the inputs were generated using test data and literature sources. 
Whenever possible, literature sources should augment subject matter 
expert judgments. RMAT would also benefit from access to test data 
regarding the actual performance of TSO and other defender systems, 
including results of red-teaming experiments. The RMAT team’s pref-
erence hierarchy for input data is laudable, preferring operational test 
data (e.g., red-teaming efforts to penetrate security) to lab data, and lab 
data to that provided by subject matter experts. 
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CHAPTER FIVE

RMAT Model Performance and Management

To produce valid and useful results, RMAT requires more than just a 
good conceptual model underlying its source code. It also needs code 
that faithfully characterizes the conceptual models and change man-
agement processes that help to ensure that the code remains faith-
ful through periodic modifications necessary for new case studies of 
risk, when improvements are made to the conceptual model, or when 
detected errors are corrected. 

Our study team was permitted to inspect the RMAT source code 
at Boeing’s facility in Huntsville, Ala., but not to take it back to RAND 
where we could undertake more leisurely and in-depth analysis of the 
software. However, Boeing did provide RAND with an executable ver-
sion of RMAT, extensive consultation on its use and interpretation, 
and detailed information on Boeing’s software change management 
processes. Within these constraints, RAND approached the software 
validation effort in four ways:

•	 Code inspection. At Boeing’s facility in Huntsville, Ala., the 
RAND study team conducted a cursory inspection of the source 
code architecture to become familiar with its organization, gen-
eral characteristics, and some of the key functions. In addition, 
we ran software quality diagnostic tools on it. 

•	 Sensitivity analysis. Using the RMAT executable file, we conducted 
over 25,000 RMAT trials, systematically varying 21 input vari-
ables. The sensitivity analysis was designed to establish whether 
the input and output variables are associated in predictable ways, 
thereby providing indirect evidence that the source code faith-
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fully implements the conceptual models. In addition, these analy-
ses were useful for understanding the sensitivity of model outputs 
to key input variables. 

•	 Targeted verification. Although we could not conduct detailed ver-
ifications of many RMAT functions or modules, we attempted 
to verify one key RMAT function—its calculation of adversary 
attack attractiveness. For this analysis, we compared RMAT 
output to outputs we calculated using the RMAT conceptual 
model.

•	 Change management verification. Finally, we examined Boeing’s 
change management processes, its evolution and plans for the 
process, and examples of how recent change orders were produced 
and executed. 

Code Inspection 

As software becomes lengthy and complex, it can tax the understand-
ing of programmers charged with maintaining and modifying the 
code, finding errors in it, or explaining the code to others who might 
need to use it. As such, software best practices have evolved to improve 
comprehensibility, management, and, therefore, reliability (Pfleeger 
and Atlee, 2006). These practices emphasize

•	 organizing the architecture into independent functional modules, 
often organized hierarchically

•	 avoiding highly nested logic in which many layers of conditional 
statements occur 

•	 using class structures to group and maintain related parameters, 
rather than passing large numbers of parameters to a method, 
since passing multiple parameters requires extensive bookkeeping 
on the part of the programmer and can degrade performance

•	 avoiding functions or modules that have a very large number of 
logical paths that might be difficult for programmers to under-
stand or track
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•	 relying on more general or abstract functions to handle similar 
operations rather than allowing a proliferation of similar single-
application or concrete functions.

To evaluate RMAT on these and other software architecture 
characteristics, we used NDepend (www.ndepend.com), a commercial 
source code management and analysis tool that provides several code 
quality metrics.1 

For RMAT, NDepend identified 58 violations of its software 
quality metrics. Violations and critical violations are registered when 
quality metrics exceed thresholds set by NDepend. Among these, 
NDepend identified three types of violations it classed as “critical”:

•	 Methods too complex. NDepend’s “complexity” score is a count of 
the number of logical paths that can be taken through a module 
(Pfleeger and Atlee, 2006). Complexity of 20 or more is scored as 
“hard to understand and maintain” and 40 or more as “critical.” 
NDepend found 37 critical violations of complexity in RMAT 
methods. One module designing the adversary’s optimal attack 
trajectory had a complexity of 223 and a logical nesting depth of 
23.2 The methods for building an attack plan and finding the best 
attack path for the adversary have complexity scores of 132 and 
127, respectively. 

•	 Methods with too many parameters. The “methods with too many 
parameters” metric measures the number of parameters that the 
system passes to a method when it is executed. More than five 
passed parameters is scored as “difficult to call” and those with 

1 NDepend assumes a hierarchical architecture for the software in which the top level is 
the application, which comprises assemblies, which comprise namespaces, which comprise 
types, which comprise methods and fields. 
2 The nesting depth is the number of “encapsulated scopes” in the method. For example, 
when an “IF” statement lies within another IF statement, it represents a nesting depth of two. 
NDepend regards nesting depths of four as difficult to understand and maintain and those 
greater than eight as extremely complex. The nesting depth is related to the complexity. If 
each encapsulation has two branches, then a module with a nesting depth of eight has 256 
independent paths through it. 

http://www.ndepend.com
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greater than eight as “critical.” NDepend found ten methods with 
more than eight passed parameters and marked them as critical. 
We evaluated most of these violations as being of trivial impor-
tance, as they involved passing parameters to a log file for record-
ing.

•	 Types too big. Types are collections of methods that carry out a 
related set of functions. The “types too big” metric counts the 
number of lines of code and the number of instructions in each 
type. NDepend identified 27 types that have more than 500 
lines of code or 3,000 instructions. One type related to adversary 
decisionmaking has almost 4,300 lines of code, almost 26,000 
instructions, and 73 methods. Another type has 693 methods. 
Often, large types have duplicative code and other redundancies. 
Consequently, maintaining the code and identifying bugs can be 
difficult. 

Additionally, NDepend determined that RMAT is highly con-
crete code, potentially leading to redundancies in the code itself and 
making RMAT more difficult to maintain. Concreteness is the oppo-
site of abstractness: Abstractness in software indicates the degree to 
which the software is a generalization of the logic being modeled. 
Abstract methods group common data structures and logical elements, 
making them easier to use and maintain than “concrete” methods, 
which maintain separate implementations of similar data and logic. 
The abstractness metric is the ratio of the number of abstract types to 
the total number of types, so ranges from 0 (highly concrete, single-
use methods) to 1 (highly general, abstract methods). The abstractness 
of five of the seven major components (or assemblies) comprised by 
RMAT is 0. The highest value of abstractness is 0.02, and this is for 
the key assembly in RMAT that performs the risk-analysis logic. Some 
aspects of RMAT, such as the management of its execution, are justi-
fiably concrete. In other parts of the program, specifically in the logic 
underlying the adversary, we expected a much higher level of abstrac-
tion. We judged three of the assemblies as properly concrete, because 
they manage specific, single-purpose activities. 
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Boeing is aware of these issues and has initiated internal actions to 
improve the code, independent of the NDepend analysis. We have not 
reviewed their proposed changes.

In summary, RMAT source code logic and organization are 
not transparent. Many methods are quite large and have dozens of 
levels of logic, making them difficult to interpret, modify, test, and 
manage. Many of the methods and even some parameter values are 
hard-coded, or scripted within the code itself, rather than abstracted 
into more general functions. Many methods with similar names appear 
to perform similar functions. There is no formal documentation of the 
requirements, architecture, algorithms, or end user manuals, though 
some areas of the code have comments. Documentation is ongoing for 
RMAT. Additionally, the software architecture has not, for the most 
part, been structured into units that can be reviewed and tested inde-
pendently as is a software best practice (Pfleeger and Atlee, 2006).

These software flaws are understandable. RMAT is a first-of-a-
kind system that has evolved as a prototype. It has been adapted and 
continuously modified to fit new requirements. The result is a complex 
program with substantially less organization and efficiency than would 
be expected of a production model, or even a prototype designed to 
TSA’s current risk-management requirements. 

As understandable as the software’s current state is, it presents 
significant challenges for expanding, revising, debugging, testing, and 
managing the code, all of which threaten RMAT reliability and valid-
ity. Simple modifications can be made reliably by developers who are 
intimately familiar with the system. Other modifications such as a new 
approach for determining attack attractiveness for adversaries may be 
more difficult and time-consuming and have broader ramifications for 
RMAT and its reliability. 

Sensitivity Analysis

The sensitivity analysis we performed using the RMAT executable file 
was designed to establish whether input variables had the expected 
associations with model results and to evaluate how sensitive RMAT 
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results are to variations in parameters, some of which may not be esti-
mated with precision. 

Design of the Analysis

Input parameters. The large parameter space and relatively slow run-
time in RMAT (approximately one minute per Monte Carlo trial) 
made a comprehensive sensitivity analysis infeasible. Instead, we iden-
tified 23 input variables that we believed should or could be influential 
in model results and systematically varied their values in sequential 
RMAT “excursions” or batches of Monte Carlo trials with the same 
input value settings.3 Values on the variables were selected using a 
near orthogonal Latin hypercube (NOLH). Our design entailed 257 
unique combinations of values on the 23 variables, with each variable 
being allowed to vary between “low” and “high” values. For continu-
ous parameters, the low value was one-half of the RMAT default value, 
and the high value was twice the RMAT default value. For Boolean 
parameters, the parameter was either 0 or 1. It is important to note 
that the experimental approach is designed to test model sensitivity. As 
such, parameter values are used that might be inappropriate for evalu-
ating security risks, and no inferences about security should be drawn 
from our results.

We selected the NOLH approach because it is an efficient way to 
explore a large parameter space. A systematic, parameter-by-parameter 
exploration of the input space of RMAT would have been infeasible, 
for several reasons. First, RMAT has thousands of parameters. Second, 
even for our reduced space of 21 parameters, a full factorial design of 
experiments would have required an infeasible number of runs, given 
the length of time each run requires. Finally, given that many of the 

3 Boeing has requested that we omit detailed descriptions of the variables we tested on 
grounds that the information is business proprietary. In summary, 11 variables concerned 
resources, preferences, capabilities, and other characteristics of the adversary; ten concerned 
performance characteristics of various aviation security components; and two concerned 
estimates of attack consequences. Two of the input parameters we selected for the sensitivity 
analysis turned out to have been “deprecated,” meaning that the software has evolved and 
the parameters have been superseded by other parameters, though they remain in the code. 
The results reported here were calculated after removing these two parameters. 
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actions in RMAT depend on random events that we could not control, 
there would have been variation among similar runs. It is important to 
note that our analysis compares the 257 combinations of parameters 
against one another with the intent of determining which parameters 
appear most to influence the values of our chosen outputs. To develop a 
representative sample of outcomes for each combination of parameters, 
we performed 50 Monte Carlo trials for each parameter. Our statistical 
analysis then uses standard approaches to determine which parameters 
influence the results most.

Our sensitivity testing differs from the way TSA and Boeing use 
RMAT. Boeing uses RMAT only in forced mode, in which the mode 
of attack is fixed from the start of each simulation. Boeing runs 425 
Monte Carlo cycles for each combination of parameters (for instance, 
before and after introduction of a countermeasure). Boeing averages 
the results of the Monte Carlo trials to produce separate baseline and 
post-countermeasure risk estimates for each output variable. This 
approach produces expected values of outputs averaged across varia-
tions in parameter values and multiple random events that can cause 
results to take wide swings around their mean values. Thus, whereas 
the standard Boeing approach is designed to establish stable estimates 
of what remains most constant across trials, our sensitivity analysis is 
designed to explore how input values and their different combinations 
cause outputs to vary away from mean values. 

Output parameters. We focused our sensitivity analysis on two 
model outputs: attack attractiveness and effective number of attacks. 
Attack attractiveness is the relative merit of an attack from the adver-
sary’s perspective.

The effective number of attacks is a measure of damages caused 
by attacks from the defender’s perspective. Effective number of attacks 
concerns the magnitude of damages produced by an attack, relative 
to the magnitude of damages the defender might expect if the attack 
were unmitigated. For example, if the adversary carried out an attack 
by placing a bomb in checked baggage, but the bomb is intercepted 
and defused before being loaded onto the airplane, then the effective 
number of attacks is zero. Alternatively, the bomb may explode but not 
cause as much damage as planned, allowing the pilot to land the plane 
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safely. In this case, the effective number of attacks will be greater than 
zero but less than 1.0. It is also possible that the attack causes greater 
damages than expected, raising the effective number of attacks above 
1.0. Similarly, the effective number of attacks can be greater than 1.0 if 
multiple or parallel attacks are carried out.

We chose these two outputs because of their relevance to TSA 
analytic needs. Attack attractiveness can be interpreted as the relative 
likelihood that the adversary will choose one attack over another. The 
effective number of attacks is a normalized measure of the expected 
damages caused by a successful, or partially successful, attack. 

RMAT configuration. RMAT results are subject to multiple ran-
domized processes, not all of which can be controlled through the 
interfaces used to edit and vary common parameters. Even when input 
variables are held constant, therefore, model results will vary. To min-
imize unwanted sources of variation, all standard deviations of user 
modifiable input parameters were set to zero. To adjust for the remain-
ing variation in output, we ran each of the 257 excursions through 50 
Monte Carlo trials, and averaged the results across the trials. 

We conducted the 257 excursions twice—once with RMAT in 
“competition” mode (Competition Mode Test), where adversaries can 
choose the most attractive of the available attack options, and once in 
“forced” mode, where adversaries attempt each available attack option 
(Forced Mode Test). For each test, we selected five attack options, span-
ning a range of potential attack effects:

1. Hijack an aircraft and use it as a weapon. 
2. Employ a large liquid carry-on bomb. 
3. Place a large freight bomb on a passenger aircraft.
4. Place a large bomb on a passenger airplane, is assisted by an 

insider in the aviation system.
5. Put shooters in the airport lobby.

Analysis. To understand how variations in the 21 input variables 
influenced the outcomes, we regressed mean outcomes for each NOLH 
excursion onto the input values using ordinary least squares linear 
regression. For the Competition Mode Test, where excursions had dif-
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ferent numbers of cases for each attack outcome, these regressions were 
weighted by the frequency of the attack in each excursion. 

Results

Of the 257 excursions in our input set, 251 excursions executed prop-
erly. A handful of excursions caused RMAT to hang. We did not inves-
tigate the cause. 

Results for the Competition Mode Test

Despite wide variation in the input values used across trials, the adver-
sary selected one of the five options 95 percent of the time.4 Attack 
selection appeared to be determined largely by the expected damage 
and risk penalty associated with each attack. For example, there is 
one attack that is usually selected unless the adversary sees a particu-
lar detector (such as a canine law enforcement unit), which causes a 
dramatic reduction in the risk penalty (from 0.93 to less than 0.05), 
making the attack unattractive. When the detector is encountered, the 
second most common attack is selected based on the damages it can 
impart. However, this second attack almost always encounters another 
detector, again causing a dramatic swing in the risk penalty factor that 
renders it unattractive. 

We found several input variables to have a significant association 
with each of the outcome variables. Regressions were performed sepa-
rately for RMAT cases in which each attack option was selected. Inter-
estingly, variations on the 21 parameters selected for this experiment 
explained a large proportion of the variance for the five attack types and 
two outcomes, despite the fact that our regression model used a simple 
linear fit. Indeed, just nine variables could explain between 85 percent 
and 96 percent of the variance in attractiveness outcomes across each 
attack type. Similarly, just five variables explained between 46 percent 
and 96 percent of the variance in effective number of attacks across 
attack types. This means that despite the interactions and other com-
plexities that RMAT captures, a linear model faithfully describes most 

4  TSA views many of the specific model results as security sensitive information, and there-
fore they cannot be released in this report. Instead, we offer an overview of the types of find-
ings revealed by the sensitivity analysis. 
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of the outcome variance. Moreover, it suggests that the variables we 
selected for analysis are important influences on RMAT outcomes, as 
we expected. 

Many of the significant parameters influence outcomes in the 
expected direction. For instance, skilled weapon-making predicts 
effective attacks, and freight detection instrument operator skills pre-
dict diminished effective attacks. Nevertheless, there were puzzling 
associations as well. If the adversary is seeking to maximize economic 
damage, why would increases in projected economic damages from 
a freight bomb or insider attacks lead to reductions in their attrac-
tiveness? Why does an increasing likelihood of having air marshals 
onboard make the hijack attack type more attractive? 

Several parameters appear to be especially important predictors 
of attractiveness and effective attacks, for multiple attack types. The 
sensitivity of model outcomes to these specific parameters is concern-
ing, however, as they are among those we have classed as unverifiable, 
because little credible information on them can be collected from intel-
ligence or subject matter experts. As such, they are subject to poten-
tially profound imprecision and estimation error. The sensitivity analy-
sis shows that any such imprecision is likely to have a significant effect 
on model predictions. 

Finally, some variables we expected to have an influence on out-
comes do not show significant effects. For instance, many observers 
have suggested that two of the most important air transportation secu-
rity improvements since 9/11 have been reinforced cockpit doors and 
vigilant passengers who are prepared to fight back (Goldberg, 2008; 
Riley, 2011). These parameters do not appear to significantly affect 
hijack outcomes.5 None of the parameters tested were significant, and 
the quality of the statistical model indicates other factors not varied 
may have been more important. 

5 Deterrence is not modeled within RMAT, so the full effect of these security measures may 
be omitted purposefully.
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Results for the Forced Mode Test

Here again, the 21 input variables accounted for a surprising proportion 
of the variance in outcome results. Seven variables explained between 
46 percent and 86 percent of the variance in attractiveness outcomes 
across attack types; and seven explained between 61 percent and 91 
percent of the variance in the effective number of attacks. 

Effects are largely in the expected direction. For instance, as the 
skill of the freight detection instrument operator increases, the attrac-
tiveness and success of freight bomb attacks decline. Nevertheless, here 
too there are some puzzling and unexpected relationships. Why, for 
instance, would increases in the probability passengers will fight back 
have a statistically significant and positive effect on the attractiveness 
of a liquid bomb attack? 

There is also a notable omission in the list of significant variables. 
The probability of successfully entering the flight deck has no signifi-
cant effect on the attractiveness of hijack attempts or on hijack success 
rates. 

As with the Competition Mode Test results, the variables that 
appear to have the greatest leverage over model results are those that 
are also most difficult to estimate with precision. 

Summary of Sensitivity Analysis Findings

The analyses carried out using RMAT provide some insight into its 
operation and behavior. However, because thousands of parameters are 
related in unknown ways, this analysis is far from comprehensive. 

A large proportion of the variance we observe in two outcomes is 
explained by the linear effects of a small number of input variables. Usu-
ally, the relationships between inputs and outputs are in the expected 
direction, but not always. Moreover, several relationships we expected 
to find were not present, such as associations between the probability 
of successfully entering the flight deck and either the attractiveness or 
success of hijack attempts. We allowed the probability of federal air 
marshals being present on the hijacked aircraft to vary over a wide 
range, yet the model suggests that their presence has no significant 
influence over hijack success rates in forced mode, which is the mode 
Boeing and TSA currently use. 
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Of the variables that appear most often to have a significant 
influence on outcomes, many are those we consider to be difficult or 
impossible to estimate with precision. These include judgments about 
how much risk might color the decisions of current and future terror-
ists or how large the maximum possible size of terrorist cells might 
be when considering known and unknown groups. Similarly, how 
large are the teams a terrorist organization would consider fielding? 
Groups who field no more than one agent per team appear in RMAT 
to have very different outcomes than those with up to five. How much 
does the unknown adversary already know about the aviation system 
before he begins reconnaissance? How efficiently and accurately can 
the unknown group learn from what they observe? How much direct 
and indirect damage do terrorists imagine will be produced by each 
candidate attack? 

These are all parameters that are subject to deep uncertainty and, 
no doubt, to wide variation across terrorist groups. It is not credible 
that subject matter experts or intelligence can supply useful point esti-
mates of these values. Moreover, even a precisely measured average 
value would fail to highlight the true nature of risks if some danger-
ous adversaries have values that are quite different than average. That 
these variables also happen to explain a large portion of the variance 
in RMAT outcomes suggests the need for caution when interpreting 
model results. 

In addition to its sensitivity to uncertain parameters, RMAT 
appears to be highly sensitive to some random processes of the soft-
ware. For instance, whether an adversary happens to observe a certain 
detection capability appears to have a dramatic effect on the adversary’s 
judgment about the risks of attempting an insider attack. Whereas 
RMAT suggests that one particular attack will usually be perceived 
as essentially risk-free, the rare chance encounter with a specific detec-
tor (such as a canine unit) causes the adversary to view the attack as 
impossibly risky. Again, the sensitivity of model results to somewhat 
speculative values and causal relationships underscores the importance 
of interpreting RMAT results with caution. 
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Verification of Attack Attractiveness 

We could not verify the coding of the entire RMAT software but 
performed a targeted verification by comparing attack attractiveness 
values logged by the RMAT executable file with those we calculated 
using input values and the RMAT attractiveness calculation. 

We were unable to perform the verification analysis for the com-
petition mode results, because of an RMAT logging error. We con-
sulted with Boeing developers to resolve this inconsistency, but they 
were unable to explain or repair it during the period of our testing. 
Boeing provided RAND with a new executable file meant to fix the 
problems we encountered, but we did not have time to reevaluate it. 

We used the same insider attack case to verify the calculation of 
attractiveness produced by RMAT in the forced mode. Here, we were 
able to verify that the stated value in the logs is consistent with the 
functional form. Therefore, the results of this verification indicate that 
there was a potential problem with either the calculation or the report-
ing of attractiveness when RMAT was run in competition mode. To 
date, Boeing has not performed analyses for TSA using the competi-
tion mode, so the impact of this error on TSA is negligible. We were 
not able to determine if the underlying error adversely affects our com-
petition mode sensitivity analyses, though it could.

Configuration Change Management and Testing

Boeing was able to describe and demonstrate many of the processes it 
uses to manage changes to RMAT. Concurrent Versions System is used 
to manage the source code. Boeing uses a SharePoint site for recording 
software errors, data, and model improvements and for documenting 
that they have been addressed. It also serves as a repository of other 
documents related to configuration management, testing, and case 
studies. Boeing uses Microsoft Project for managing the case stud-
ies and updating the RMAT code, called “increments” by Boeing. 
Boeing builds new versions of RMAT as needed, and they are veri-
fied by comparing the log files to recent model outputs. Unexpected 
results as documented in the log files indicate potential errors, which 



90    Modeling Terrorism Risk to the Air Transportation System

are addressed subsequently. The general process for recording problems 
and logging their resolution is consistent with standard software main-
tenance principles. 

A greater challenge that appropriate change management pro-
cesses may not resolve is related to steady evolution of the model with-
out discrete modules that can be independently tested. RMAT uses 
a “baseline” case that is intended to represent the current state of the 
adversary and airport security, but the baseline changes frequently 
in terms of the aviation system configuration, input values, available 
countermeasures, and attack options. A comparison of two blue agent 
input files from version 31 and 32 revealed 37 changes: 23 adding, 
removing, or manipulating agent behavior logic, and 14 that appeared 
to only change the file’s format. A comparison of configuration con-
stant files showed 13 changes: ten related to updating RMAT as a 
result of an evolving understanding of TSA security such as increasing 
the level of AIT deployment from 0 to 40 percent, and three comments 
or deletions. The effects input file also changed. Each such change can 
produce results that are not directly comparable to results from earlier 
versions of the baseline. Therefore, it is often not possible to verify that 
the current version of the model is producing results consistent with 
previous versions. 

The inability to test modules or the entire program for consistency 
across revisions increases the risk of errors being introduced into the 
code undetected. 

RMAT Software and Management: Satisfaction of 
Requirements 

Table 5.1 summarizes our assessment of agreement in RMAT with 
four of TSA’s risk-assessment requirements concerning usability, per-
formance, and management. 

Requirement 16 calls for risk-assessment methods to use and pro-
duce data in common file formats. RMAT input and output files are in 
Extensible Markup Language (XML) and plain text files. The require-
ment is satisfied.
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Requirement 17 requires that risk-assessment methods be kept up 
to date and sufficiently flexible to allow for rapid updating. Boeing 
and TSA have established a protocol for incorporating new data into 
RMAT when necessary to support an analysis. Once data are available, 
it appears that Boeing is able to incorporate them in a timely fashion to 
support the analysis. The user input files enable RMAT to be config-
ured quickly when the scope of a study is completely within the bound-
aries of the current system. However, other tasks are more difficult. For 
example, adding new agents and the logic governing their behavior 
requires a developer. Further, the architecture does not easily enable 
developers to modify logic that is not contained in the user input files. 
The requirement is partially satisfied.

Requirement 18 concerns the ease with which adversary and avia-
tion system characteristics can be updated by the analyst. As RMAT 
is currently employed, Boeing is the user of the system. Our experi-
ence with RMAT is that the user has the ability to vary the parameters 
defining the adversary. The requirement is satisfied. 

Requirement 22 requires that risk-assessment methods provide 
sufficient analytic agility to permit multiple simultaneous risk analyses 
and quick turnaround analyses that provide results within 14 days of 
problem formulation. Clearly, RMAT and the process supporting it is 
capable of running multiple risk analyses concurrently. Quick turn-
around studies are more difficult, however, because of the detailed data 

Table 5.1  
RMAT Defender Model Satisfaction of Associated TSA Requirements

Number Description
RMAT Satisfaction 

of Requirement

16 Data used and produced by risk 
assessments should be easy to edit and 
manipulate.

Yes

17 Risk assessment methods should permit 
rapid incorporation of new data.

Partial

18 Analysts should be able to modify systme 
and adversary characteristics.

Yes 

22 Risk assessment methods should allow 
for multiple concurrent studies and quick 
turnaround risk analyses.

Yes 
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that must be collected and vetted to run case studies. Once the data 
are collected, the analyses can be run in a week or so. However, col-
lecting the data typically takes a month or more. We acknowledge that 
data collection time frames are longer and only loosely dependent on 
RMAT, so we judge this requirement as met. 

Conclusions and Recommendations

We can make several recommendations from our inspection of the 
code, the results of the static code analysis, a limited series of sensitivity 
analysis, and our review of the software change management processes 
used by Boeing.

The sensitivity of RMAT results to parameters that cannot be precisely 
estimated suggests the need for caution when interpreting results based on 
point estimates for those parameters. Our sensitivity analyses revealed 
that RMAT results are highly sensitive to multiple parameters that 
cannot be estimated well. This means that inevitable errors in the esti-
mates used for these parameters can have large effects on model out-
comes. Including these sensitivities as part of formal RMAT analyses 
would help to put the uncertainty of the results in context. 

To improve error detection, change management, and model reli-
ability and validity, TSA should consider having Boeing redo the RMAT 
architecture. The inspection of the code and the results of the static 
code analysis indicate that RMAT is an example of a software project 
that has evolved from a prototype and continues to evolve as new ideas 
emerge about how best to represent the confusing realm of terrorism 
risks. Because it was not designed to meet specific up-front require-
ments and was not designed using software engineering principles 
appropriate for a tool that would be relied on for high-stakes man-
agement decisions, RMAT currently suffers from code quality issues 
related to complexity and module size. Boeing is already addressing 
some of these issues.

If TSA intends to deploy RMAT as the formal tool for perform-
ing aviation risk assessments, then a more streamlined and manageable 
organization to the code is needed. This would make testing and main-
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tenance of RMAT easier for Boeing and the specification and run-
ning of scenarios simpler for TSA. Moreover, the process of developing 
RMAT through a formal requirements process would ensure that the 
resulting product has the needed functionality and is able to support 
the risk-management process at TSA. However, we understand that 
this may not be realistic given the way RMAT was developed and is 
used as a supporting part of a larger process. As a tool for promoting 
thought and development of risk-management strategies, RMAT can 
continue to add value to the risk-management process in its current 
form.

If the RMAT architecture is redesigned, special care should be given 
to working with parameters with unknown (and perhaps unknowable) 
values. Our sensitivity analyses revealed that model results are highly 
sensitive to many variables that may be difficult or impossible to esti-
mate. The current design of RMAT treats these parameters as essen-
tially knowable, though often subject to some measurement error. This 
may not be a good assumption for many of these variables. To the 
extent that variables that cannot be credibly estimated should be used 
to represent important phenomena, RMAT and its analytic process 
should be redesigned to highlight the effects of important uncertain-
ties on model outcomes and to help users understand how their values 
affect model results. We do not view it as sufficient to allow variation 
in uncertain parameters but to then treat the average result across these 
variations as RMAT best estimates of the outcome.

TSA and Boeing should investigate some of the anomalous relation-
ships RAND observed in the sensitivity analysis. We identified several 
relationships between input variables and model outcomes that we 
could not explain. These included significant associations in the wrong 
direction (e.g., increased economic consequences predicting lower suc-
cess rates and increasing probabilities of air marshals’ presence lead-
ing to increased hijack attractiveness) and the absence of associations 
where we would expect to find strong relationships (e.g., the absence 
of flight deck and federal air marshals’ effects on hijack success and 
attractiveness). 

TSA should understand that RMAT is a complex piece of software 
that is likely to include bugs and errors in addition to those we identified 
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during our review. We identified several software bugs while working 
with RMAT and reported them to Boeing. Because we were working 
with the executable file and did not have direct access to the software 
code, we were unable to trace the sources of the bugs or determine 
if, for instance, they affected internal calculations of risk or merely 
concerned how data were logged. Possible errors in the calculation of 
attractiveness or its logging could make the Competition Mode sensi-
tivity analysis reported in this chapter invalid. Further, the sensitivity 
analysis covered only 97.5 percent of the test space because of a prob-
lem where RMAT would run indefinitely. 

Boeing reports being aware of most or all of these bugs and has 
repaired them. Nevertheless, the difficulties posed by RMAT architec-
ture for maintaining, revising, and debugging the code make it likely 
that there are or will be additional bugs that could affect model results. 
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CHAPTER SIX

Supporting TSA Management and Investment 
Decisions with RMAT

TSA must make high-stakes resource allocation decisions designed to 
counter threats that are not well known, that are continuously evolving 
and innovating, and that may intelligently adapt to, evade, or overcome 
our security measures. If TSA invests in a detection device or imposes 
a new carry-on restriction, how likely are these countermeasures to 
reduce overall risk? How should TSA compare countermeasures that 
affect different risks or that reduce risk to one part of the air transpor-
tation system while increasing it elsewhere? Because the risks posed by 
these threats are shifting and complex, TSA leadership needs analytic 
tools for understanding the possible implications of policy choices. 

RMAT was developed, in part, to support these decisions with 
valid information about air transportation system risk and the risk 
reductions that might be expected from existing or planned counter-
measures and to do so in ways acceptable to oversight and stakeholder 
organizations. Accordingly, the tool and supporting processes are being 
used to evaluate the cost-benefits of AIT, shoe scanners, the SPOT 
program, and other TSA programs, although in each of these cases, 
the analyses using RMAT data were developed after major program 
decisions had already been made. Moreover, TSA would like to use 
RMAT as part of its answer to such oversight organizations as GAO 
and DHS that have asked for a structured risk-assessment methodol-
ogy (e.g., GAO, 2009). 

In this chapter, we describe some key features of models that make 
them useful for decision support and then evaluate RMAT against 
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those features. We conclude with suggestions for improving the use of 
RMAT for such decisions. 

Before proceeding, let us emphasize that what follows is not 
criticism of RMAT itself. RMAT is an impressive achievement, one 
that has made real strides in characterizing the terrorist threat to avia-
tion at sufficient levels of detail to allow us to understand the related 
system problems in ways that were not possible previously. It is a valu-
able repository of knowledge about a problem that cannot be evalu-
ated except through modeling and simulation. Instead, this chapter is 
about TSA risk analysis. We believe that RMAT can play a valuable 
role in TSA analysis but that TSA needs additional tools to supplement 
RMAT strengths. Further, we believe that some, though definitely  
not all, of the hopes TSA has had for RMAT are misplaced: high-
resolution models are superb for some things and very poor for others.

Therefore, in this chapter, we consider how TSA should or should 
not use RMAT to serve its risk-assessment needs. This requires some 
discussion of the risk-assessment processes that RMAT supports, 
though we emphasize we have not conducted a comprehensive assess-
ment of TSA’s risk-assessment processes. Therefore, we limit our dis-
cussion to those processes we observed that draw on RMAT results to 
support policy analysis.

Modeling and Simulation for Decision Support

Major acquisitions, strategic planning, and most resource allocation 
problems require that decisionmakers anticipate likely future condi-
tions and how different policies or investments will perform under 
those conditions. If predicting the future were easy or just a matter 
of plugging the right starting values into a well-constructed model, 
planning would be easy. But even when current information is very 
good, such as the data we have on financial markets, our success in 
predicting the future is spotty at best, and models attempting to fore-
cast the future are often subject to profound and structural sources of 
uncertainty that can bias predictions in unanticipated ways. This may 
be especially true when models are designed to predict the behavior 
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of small groups of terrorists, some of whom we know little or nothing 
about today; whose motivations, intentions, capabilities, and organiza-
tions are evolving; and who are studying our defenses to design innova-
tive attacks that circumvent our security. 

As noted in TSA’s risk-management doctrine (TSA, 2009b), 
uncertainties about future terrorism, as with uncertainties about future 
stock market conditions, favor decisions to adopt portfolios of mea-
sures that offer robust performance across diverse possible futures, 
rather than selecting investments that optimize performance but only 
for a particular set of future conditions. 

In the language of decision theory, policymakers should seek 
strategies that are flexible, adaptive, and robust (FAR strategies; Davis, 
2002) to hedge against major uncertainties about the future. Flexible 
strategies are those that can simultaneously address multiple require-
ments or objectives, including some that were not anticipated; adaptive 
strategies anticipate and build in approaches for modifying or chang-
ing their approach in response to new information or conditions; and 
robust strategies perform well across a wide range of possible future 
conditions. 

Modern decision support tools help decisionmakers understand 
how their options are likely to perform across a range or spanning set 
of scenarios selected to highlight how deep uncertainties in our cur-
rent understanding of the future could affect which decisions are best. 
Deep uncertainties differ importantly from statistical uncertainties 
that can be estimated when well understood phenomena are subject to 
uncertainties with probability distributions known through repeated 
observations. Deep uncertainties exist where we lack vital informa-
tion about the phenomena under investigation, the mechanisms that 
produce those phenomena, how parameters interact with each other, 
and the true values of those parameters or their distributions (Davis, 
Kulick, and Egner, 2005).

Examples of decision support methods designed to address 
the effects of deep uncertainty on investments, policy, or strat-
egy include scenario planning (Schwartz, 1996), alternative futures  
analysis (Slaughter, 2005), capabilities-based planning, portfolio analy-
sis, assumptions-based planning, robust adaptive planning, and robust 
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decisionmaking (Davis, 2002; Davis, Shaver, and Beck, 2008; Dewar 
et al., 1993; Lempert, Popper, and Bankes, 2003; Groves and Lempert, 
2007). Each of these methods seeks in different ways to understand 
the full range of possible futures, how they relate to multiple objec-
tives, and the policies or investments that offer the most robust benefits 
across objectives and divergent futures. 

Understanding and Communicating RMAT Methods and 
Assumptions

Complex models such as RMAT present a special challenge to analysts 
who wish to provide useful and understandable decision support to 
policymakers. Because these models cannot be validated by comparing 
their results to a large body of empirical evidence, policymakers will 
form their own judgments of a model’s credibility based in part on its 
face validity, its intelligibility, the reasoning embodied in the model-
based analysis, and their understanding of the scope and applicability 
of the model. 

Indeed, best practices for analytic products generally, and policy 
analysis modeling specifically, emphasize the importance of transpar-
ency and comprehensibility of the model; clear and candid accounting 
of its caveats, assumptions, and hypotheses; and a thorough assessment 
of how uncertainties in the model’s logic, underlying theory or input 
data could affect its findings (Bigelow and Davis, 2003; Office of the 
Director of National Intelligence, 2007; National Research Council, 
2008, 2010). 

This is a best practice that becomes unwieldy for most high- 
resolution models such as RMAT that incorporate dozens or hundreds 
of interacting assumptions and caveats relating to how terrorists think 
and learn; their objectives and preferences; their resources, skills, and 
capabilities; and the types of attacks they might consider. In the case 
of RMAT, for instance, consider just the caveating required to explain 
current design choices for what counts as part of the modeled air trans-
portation system. A partial listing of caveats just for defining the scope 
of the system would include the following:
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•	 RMAT models domestic, commercial air transportation of freight 
and passengers but not other transportation modes or commercial 
aviation associated with the general aviation system. 

•	 RMAT models risk to domestic air travel but not the risk from 
inbound foreign commercial transportation to the domestic 
system, such as those posed by the shoe-bomber, Richard Reid; 
the Christmas Day bomber, Umar Farouk Abdulmutallab; or the 
al-Qa’ida in the Arabian Peninsula printer cartridge bombs.

•	 RMAT primarily models security measures performed at the air-
port or in planes but not most law enforcement activities that 
occur outside the airport, such as those leading to the arrests in 
Britain of terrorists planning a liquid bomb attack on commercial 
flights.

•	 RMAT does not consider air transportation system vulnerabili-
ties that involve information or communication systems, such as 
booking systems, air traffic control systems, or navigation sys-
tems. 

•	 RMAT considers only the risk associated with 67 prespecified 
attack options, including most system vulnerabilities included 
in the TSSRA air transportation system risk models other than 
chemical and biological attacks. 

•	 RMAT describes the current configuration of airport security, 
which is limiting for analyses designed to describe risk beyond 
the next major successful attack that results in major changes to 
airport operations or security. 

•	 RMAT assumes that all airports are essentially equivalent in terms 
of vulnerabilities and security operations. Thus, for instance, 
Reagan National Airport in the Washington, D.C., metro area is 
exposed to no different risks or vulnerabilities than Cincinnati/
Northern Kentucky International Airport. 

•	 RMAT does not attempt to describe the absolute risks to the 
system, rather just the relative risks, or changes in magnitude of 
risk, associated with modifications to the system, assuming that 
for any growth or decline in absolute risk, countermeasures can 
be assumed to have proportional growth or decline in their risk-
reducing effects. 
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Each of these caveats, and many others concerning the types of 
terrorists modeled, how risks are defined, the types of attack conse-
quences modeled, and other design characteristics has important but 
often murky implications for how to interpret model results. It is true 
that RMAT could be further developed to eliminate some or all of 
these caveats, but it is unlikely that such improvements would succeed 
in eliminating many major caveats.

RMAT is designed to highlight how attackers might adapt to or 
circumvent security measures. For instance, if it becomes too difficult 
to smuggle a weapon through the passenger checkpoint, RMAT might 
suggest that the attacker will pursue the same attack using an insider 
to convey weapons to the sterile area of the airport. As such, the model 
is properly described as one that captures the risk-shifting that TSA 
recognizes as a principal characteristic of the intelligent adversaries it 
must counter. 

In recent practice, however, RMAT is run in forced mode, in 
which attackers are not allowed to respond adaptively to security mea-
sures by shifting to an alternative attack. Forced mode is used in lieu 
of competition mode, where attackers select the most attractive attack 
from a set of alternatives. Forced mode is preferred because it reduces 
reliance on some of the uncertain assumptions in the adversary model 
about target selection, and because comparison of the attractiveness 
of each attack before and after introduction of a countermeasure can 
provide a more refined understanding of where risk might be shifting, 
and why. 

Results from RMAT when it is run in forced mode provide 
conditional estimates of risk. That is, they provide estimates of the 
likelihood of success or consequences conditional on an attack of that 
type being attempted. The advantage of considering conditional risks 
and risk reductions is that they provide program managers with a 
clear understanding of how a specific countermeasure affects the risk 
of attacks such as those it was designed to counter. For instance, the 
3-1-1 policy was designed to prevent liquid explosives from entering the 
system through checkpoints. By examining change in conditional risk 
before and after adoption of the policy, we can provide an estimate of 
the number of liquid explosives attacks that were prevented, assuming 
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that there is no adaptation in the means of bringing liquid explosives 
onto planes. This type of analysis can be useful for evaluating the effec-
tiveness of a technology or policy for a given narrow objective, but it 
is less useful for evaluating the cost-benefits of the new technology. To 
establish cost-benefits, we should be more interested in understanding 
how introduction of the countermeasure reduces overall system risk, 
not just the risk of a particular, narrow attack type. 

Conditional risks also may be especially difficult to interpret and 
communicate clearly to policymakers. For instance, consider using this 
approach to evaluate the effects of a new countermeasure, such as a 
new passenger screening technology at the checkpoint. Figure 6.1 illus-
trates what such an analysis might look like for four attack strategies. 
The new checkpoint technology appears to reduce expected losses con-
ditional on either a body bomb or hijack attempt but has no effect on 
insider and freight attack vectors. 

Because each of the risk-reduction estimates is conditional on a 
different event, the risk and risk-reduction estimates in Figure 6.1 are 
not strictly comparable. That is, the large body bomb risk reduction is 

Figure 6.1 
Expected Losses per Attack for Four Types of Attack 

NOTE: The data in the figure are fabricated and are for illustration only.
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conditional on a large body bomb attack being attempted, whereas the 
hijack risk reduction is conditioned on that type of attack. By using 
RMAT in forced choice mode, results such as those depicted in Figure 
6.1 no longer conform to the familiar conceptualization of risk as 

Riski = P(Attacki occurs) * P(Attacki Succeeds) * Consequence(Attacki ),

for all attack types, i. Instead, risks in Figure 6.1 can be formulated as

Riski|i = P(Attacki Succeeds|Attacki Occurs) * Consequence(Attacki ),

where Riski|i is the risk attributable to attacks of type i, conditional on 
attempts of that type. To render the different conditional risk estimates 
comparable, they must be multiplied by the probability of the attack 
occurring:

 Riski = P(Attacki Succeeds|Attacki Occurs) * 
 Consequence(Attacki )* P(Attacki occurs).

In other words, the baseline and countermeasure risk estimates in 
Figure 6.1 are misleading until they have been multiplied by the prob-
ability that each attack type occurs. For instance, if the probability of 
occurrence of freight bombs, body bombs, hijack, and insider attacks 
were 0.1, 0.08, 0.05, and 0.01, respectively, it would be wrong to con-
clude from Figure 6.1 that hijack and insider represent the greatest 
baseline threats. In fact, they would be the lowest. And it would be 
wrong to conclude that the new technology offers greater risk reduc-
tion for hijack than for body bomb. The reverse would be true. 

Borrowing an example used by Mueller and Stewart (2011), the 
conditional risk of a tsunami in Columbus, Ohio, might be very large, 
and no doubt it would be larger than the conditional risk of, say, a 
large conventional bomb. Moreover, the risk reduction that could be 
achieved by building a network of strong sea walls might be consid-
erable. It is not until the probability of the tsunami in Columbus is 
factored into these risk estimates that a meaningful comparison of tsu-
nami and conventional bomb attacks can be made, at which point the 
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apparently greater tsunami risk can be seen to be trivial by comparison 
to that of the explosive. 

In cases where the probability of attack changes from one attack 
type to another, or from baseline to after introduction of a counter-
measure, these conditional values are not comparable, so should not be 
used to estimate relative risk. For example, it is easy to imagine a case 
where introduction of a countermeasure increases the cost and time 
required for the adversary to mount an attack, but conditional on the 
attack being attempted the probability of success is the same as it was 
before introduction of the countermeasure. Using the current approach 
to understanding risk reduction, one would falsely conclude that the 
countermeasure offers no risk reduction. However, if the probability of 
attack is diminished by the increased adversary time and costs, the true 
effect of the countermeasure is to reduce risk. Similar examples result 
in the current procedure overestimating risk reduction. 

Even when data such as those in Figure 6.1 are produced by run-
ning RMAT in competition mode, there are problems with using such 
data to extrapolate likely cost benefits. If the cost of the new technology 
is just $10 million, a policymaker might view this chart and conclude 
that the $12 million or $20 million reduction in expected losses after 
the first body bomb or hijack attempt would more than pay for the 
new technology. That would be correct, but making the benefits con-
ditional on adversaries continuing to pursue these forms of attack after 
introduction of the new technology requires doubtful assumptions that 
violate TSA’s risk-management doctrine (TSA, 2009b). In particular, 
it assumes that adversaries will not adapt to the countermeasure by 
pursuing a different attack strategy. In this illustrative example, for 
instance, a rational adversary might respond to the new countermea-
sure by instead pursuing a freight bomb attack. In that case, the benefit 
of the new technology is more like $5 million for the first attack, rather 
than the $12 million the policymaker assumed. Or the attacker might 
be pushed to pursue the insider-assisted body bomb attack, in which-
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case the new technology would not only cost $10 million but could 
encourage greater losses than would otherwise be expected.1

Moreover, it may be that attackers are not chiefly focused on 
smuggling weapons through the checkpoint. In Figure 6.1, for instance, 
attackers seeking to maximize expected losses might be more interested 
in an insider-assisted body-bomb attack, in which case the new tech-
nology offers no benefits. 

In each example, the apparent benefit of the technology depends 
on the assumptions that terrorists are considering only attacks that 
require smuggling weapons through the checkpoint and that they 
will not respond adaptively to new technologies by seeking alterna-
tive attack strategies. There is an extensive literature demonstrating 
the weakness of these assumptions (Jackson et al., 2007), and TSA’s 
risk-management doctrine emphasizes the need to account for terrorist 
adaptation and the risk-displacement effects of new countermeasures. 

A related concern is that defenders too are adaptive. When attack-
ers succeed or even come close, the United States is likely to respond 
as it has in the past with new security procedures and technologies. 
The pictures RMAT can paint with graphs such as Figure 6.1 rep-
resent an estimate of current risk, but it may be a poor depiction of 
risk after the next attack. This is particularly important to convey to 
decisionmakers, since it has implications for how they understand the 
risk-reduction benefits of a new technology. Indeed, it raises questions 
about whether RMAT in its present form can satisfy Requirement 2, 
which states that risk-reduction estimates should be calculated for a 
5–10 year acquisition planning horizon, taking into account the evolu-
tion of defender systems.

For instance, suppose the new technology described in Figure 6.1 
costs $50 million. The policymaker might be inclined to believe that 
the benefits of the new technology will outweigh its costs after just 

1 The analysis here assumes that terrorists can shift between alternative attack modes freely. 
In fact, some alternative modes may be difficult to plan and prepare for, in which case the 
countermeasure forcing such adaptation should get more risk-reduction credit than we are 
suggesting. Understanding time lines for adapting to countermeasures represents an inter-
esting, and potentially important, feature of terrorism risk estimation that has not yet been 
undertaken.
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a few body-bomb or hijack attempts. Almost certainly, this inference 
would be incorrect. History suggests transportation security will evolve 
in response to any serious attempts, whether or not they are successful, 
with the likely effect of changing the risk-reduction benefits of existing 
programs: 

•	 After the Pan Am bombing over Lockerbie, laptops and other 
electronic devices such as those suspected of housing the bomb 
became subject to routine scrutiny, likely reducing the effective-
ness other checkpoint processes such as carry-on luggage screen-
ing and explosive trace detection. 

•	 After the attempted shoe-bombing by Richard Reid, shoes were 
subjected to X-ray screening, potentially affecting the perfor-
mance of carryon luggage screening and explosive trace detection. 

•	 After the London liquid bombers were disrupted, new liquid 
restrictions were put in place, which not only complicated check-
point baggage screening but might also have modified the effec-
tiveness of luggage screening and explosive trace detection tech-
nology. 

•	 After the 2009 Christmas Day body-bomb attempt, full-body 
scanners and enhanced patdown procedures were implemented, 
reducing the benefits attributable to magnetometers. 

It is likely, therefore, that after the next attempted or success-
ful attack, security measures will be implemented that alter the cur-
rent risk benefits that RMAT calculates for a countermeasure. Thus, 
cost-benefit calculations that assume an accumulation of benefits using 
current-day RMAT estimates are likely to overestimate the benefits of 
the technology. Instead, it would be reasonable to assume that secu-
rity benefits degrade over time as the system and attacker capabilities 
evolve.



106    Modeling Terrorism Risk to the Air Transportation System

Risk Assessment for Decision Support: Satisfaction of 
Requirements

Six high-priority risk-assessment requirements concern either how risk 
is modeled or how risk results can be used. On the basis of the dis-
cussion above, we evaluate that RMAT alone cannot satisfy most of 
these requirements, though it can often partially satisfy them subject 
to important caveats. 

Requirement 1 calls for conceptualizations of risk to be consis-
tent with TSA risk principles. This is a challenge, because TSA’s risk-
management doctrine offers a sophisticated understanding of the com-
plexities of terrorism risk management (TSA, 2009b). In particular, it 
emphasizes the following points:

•	 Terrorists are adaptive, so countermeasures may cause attack strategies 
or targets to shift. As noted above, RMAT is designed to allow for 
such risk-shifting, at least among predefined attack types. How-
ever, this competition mode in which terrorists can choose the 
most attractive available option is not currently used by TSA, and 
the probabilities of success estimates drawn from RMAT in this 
mode do not properly account for risk-shifting. Instead, estimates 
of attack attractiveness, probabilities of success, and expected 
damages are estimated conditionally, depending on which type 
of attack is selected. This approach can still offer insights into 
terrorist adaptation and resulting risk-shifting. But the estimates 
of pre- and post-countermeasure risk for any particular attack do 
not account for risk-shifting when results are produced in forced 
mode. Instead, the user must examine how risk appears to have 
shifted for other attacks after introduction of the countermeasure, 
though insights from these comparisons are quite general, rather 
than quantitative, because as discussed above, risk reductions for 
different attacks should not be treated as occurring on equivalent 
scales. Therefore, when TSA analysts present their leadership with 
RMAT results, they routinely caveat the results with a warning 
that risk-shifting is not accounted for. TSA reports that it has 
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taken steps to develop a methodology to better account for deter-
rence and threat-shifting, but we did not review this method. 

•	 A key benefit of security may be deterrence.2 As it is currently used, 
RMAT assumes that attackers will mount an attack. This means 
that RMAT attackers proceed with an attack even when they 
stand no reasonable chance of success. As discussed in Chapter 
Two, this is a poor assumption, as many terrorists have proven 
to be highly risk-averse. If none of the available attacks stands an 
acceptable chance to succeed, terrorists are likely to be deterred 
from them, to shift their attacks outside the air transportation 
system, or to adopt a new attack strategy other than those antici-
pated by RMAT. RMAT is not currently designed to account for 
these outcomes, so TSA risk analysts advise their leadership to 
adjust their understanding of RMAT results to account for deter-
rence effects. 

•	 Terrorism risks often involve unanticipated attacks. Terrorists can 
be expected to study our security defenses and to plan attacks 
that our security systems do not adequately anticipate and coun-
ter. Moreover, because we lack key information about terrorist 
capabilities and intentions, which may be evolving continuously, 
we lack critical information about the types of attacks to expect. 
Because RMAT evaluates risk on a predefined set of attack strate-
gies and makes no allowance for a background level of risk that 
cannot be further reduced, RMAT requires the implicit assump-
tion that there will be no surprises—an assumption inconsistent 
with TSA risk doctrine. A simple adjustment that could address 
this concern would be to add one more attack type to those mod-
eled, called “some other attack.” By setting the presumed attrac-

2 Here, Requirement 1 is not entirely consistent with Requirement 7, which states that 
modeling deterrence effects is a low priority. We disagree with this rating and agree with 
the emphasis that the TSA risk doctrine places on deterrence effects. If there is a probabil-
ity of success below which attackers are not willing to risk their efforts, countermeasures 
designed to further reduce attacker success will incorrectly appear in RMAT to effectively 
reduce system risk. Since there is good evidence that attackers may require very high levels of 
success to proceed (e.g., Enders and Sandler, 2002), the omission of such deterrence effects 
could dramatically bias estimates of the relative risk reductions attributable to new security 
systems. 
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tiveness of this background or unexpected risk option to a range 
of levels, it may be possible to get a truer understanding of the 
likely risk-reduction benefits associated with countermeasures 
directed against those attacks we can anticipate. 

•	 TSA and other security providers must continuously adapt and inno-
vate to address emerging risks. TSA correctly views risk manage-
ment as a dynamic process that evolves continuously. RMAT is 
not designed to anticipate this evolution. Instead, it is designed to 
offer a view of current risk and how it might be affected by new 
countermeasures. As discussed above, extrapolations of such risk 
estimates to the future, especially any future that follows another 
attempted attack or the introduction of a new security system, are 
almost certainly unwarranted. For this reason, TSA needs other 
tools or processes for considering how risk-reduction estimates 
suggested by RMAT may be likely to degrade over time to derive 
estimates that satisfy Requirement 2, which states that risk analy-
ses should provide risk-reduction estimates for a 5–10 year plan-
ning horizon. 

•	 Because future terrorism risks are subject to sources of deep uncer-
tainty, TSA does not seek to minimize point estimates of future 
risk but rather seeks to identify risk-mitigation solutions that coun-
ter a wide spectrum of possible future risks. TSA decisionmakers 
need information on the risk reductions that will be produced 
by new security measures. Since we are poor at predicting the 
future, decision theory used at the Department of Defense and 
elsewhere emphasizes identifying options that are robust to deep 
uncertainties in such prediction exercises. In practice, this typi-
cally means using exploratory analysis to evaluate decision out-
comes across a set of test cases selected to span all key sources 
of deep uncertainty (Davis, Shaver, and Beck, 2008). TSA uses 
sensitivity analysis methods that can span a portion of the uncer-
tain future. That is, as it is currently used, RMAT calculates an 
estimate of current or baseline risk from which risk reductions 
are calculated for new security measures under a set of excur-
sions from a best estimate of the measure’s risk-reduction effects. 
These excursions explore assumptions concerning the expected 
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number of attacks per year, whether the attacker has low or high 
capabilities, several deployment options, and expected technology 
improvements. This approach provides insights into the robust-
ness of the RMAT results to the tested assumptions, but these 
analyses depend strongly on the validity of the base case assump-
tions and many other uncertain variables that are not systemati-
cally explored. In reality, the baseline is not at all like a good “best 
estimate” around which to do excursions.3 This approach does 
not explore the entire space of plausible futures, nor does it clarify 
which RMAT assumptions may be most important for determin-
ing outcomes.

TSA has also piloted a “capability gaps” process, partially 
modeled on DoD’s capability development model, which is 
intended to find security solutions that are robust across a range 
of risks. TSA uses RMAT results as one of several risk and intel-
ligence inputs into the process. However, TSA has yet to fully for-
malized this process, and we did not review it as part of this study. 

RMAT can be used to study how particular sources of 
deep uncertainty affect results, but it is not designed to support 
a comprehensive assessment of how major sources of uncertainty, 
understood at a higher level of abstraction, affect risk assessments. 
Thus, we conclude that RMAT does not satisfy Requirement 5, 
which requires that the tool provide accurate information on any 
uncertainty in model results.

Because RMAT does not or only partially satisfies these core TSA 
risk-management principles, we conclude that RMAT only partially 
satisfies Requirement 1. 

3 By this we mean that, although the baseline may be as reasonable a single case as any 
other, it is no more likely than some very different cases. Thus, sensitivity analysis around the 
baseline, for a given parameter, may greatly understate the actual sensitivity because, with an 
equally plausible baseline, sensitivity would be much higher. This was a core motivation in 
the development of exploratory analysis in DoD work (see Davis, 2002, and the references 
therein to work tracing back to the 1980s). See also a white paper developed for DoD’s master 
plan for modeling and simulation (Davis and Henninger, 2007, p. xii, which also lists recom-
mended functional requirements for models).
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Requirement 4 requires risk assessments that estimate absolute 
and relative risk and risk reduction. Although RMAT produces esti-
mates of expected losses per attack attempt, it was never intended to 
estimate the likelihood of attempts, so it cannot estimate absolute levels 
of risk. As such, whereas RMAT can partially meet this TSA need, 
TSA will need to rely on other tools or methods to produce absolute 
risk estimates, such as the Transportation Sector Security Risk Assess-
ment, which is designed to provide absolute risk estimates. TSA reports 
that it is currently working on a process to better integrate TSSRA 
results into its risk-modeling and analytic products. 

In lieu of absolute risk estimates, RMAT calculates relative risk 
reductions conditional on attacks. RMAT developers emphasize that 
because the absolute risk of any attack is not estimated for the model, 
the conditional risk is not itself meaningful. Instead, the more mean-
ingful risk measure is relative risk-reduction calculated for any changes 
from baseline conditional risk. That is, for any set of security measures, 
RMAT results seek to describe the proportion of baseline risk each 
countermeasure could be expected to eliminate and to do so in a way 
that allows the relative benefits of each countermeasure to be com-
pared. That is, RMAT calculates risk reduction, RRi, for each counter-
measure, i, as 

RRi =
BR −CRi

BR
,

where BR is system risk at baseline, and CRi is risk after introduction 
of countermeasure i. 

Relative risk estimates such as these are used to estimate the ben-
efits of new countermeasures without necessarily knowing the true 
level of baseline risk. In doing so, however, they make strong assump-
tions about features of absolute risk that are unlikely to be correct. For 
instance, unless we can assume that CRi scales with BR, for all coun-
termeasures (that is, that CRi = BR*a, for some constant. a), it is clear 
from the equation above that RR is not a value that is independent of 
absolute risk and will yield different estimates of the value of counter-
measures depending on that absolute risk level. 
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The assumption that CR scales linearly with BR is a poor assump-
tion, since few countermeasures will affect all sources of system risk 
uniformly. That is, suppose baseline risk is made up of several dis-
crete components of system risk, for example, risks associated with the 
checkpoint, C, risks associated with cargo, A, and risks associated with 
insiders, I, so that BR = C + A + I. Then, any countermeasure that 
affects only one of those component sources of system risk, say, reduc-
ing insider risk by d, would result in CR = C + A + (I – d). For it to be 
true that CR = BR*a, then

C + A + I – d = a(C + A + I), or d = (1– a)BR, 

meaning that the benefits of security improvements to any compo-
nent of system risk must also scale with total system risk. This leads 
to the perplexing conclusion that if the true risk to which the passen-
ger checkpoint is exposed doubles, but the risks associated with cargo 
and insiders is unchanged, the risk benefits associated with our insider 
countermeasure must nevertheless be assumed to increase. 

As RMAT results are currently used to support cost-effectiveness 
estimates, an additional problem with RMAT risk estimates should 
be addressed in TSA’s risk assessment process. TSA does not use 
RMAT estimates of expected defender consequences of attacks, favor-
ing, instead, estimates of attack consequences generated by another 
TSA risk-assessment process, the Transportation Sector Security Risk 
Assessment (TSA, 2010), so that a consistent set of consequence esti-
mates are used across TSA analytic products. Thus, TSA calculates 
independent estimates of expected losses, by multiplying the RMAT 
probabilities of success for individual attacks by TSSRA estimates of 
the likely consequences of those attacks. This approach is attractive 
because it uses more comprehensive consequence data than what are 
available in RMAT, though the TSSRA estimates suffer many of the 
limitations we note in Chapter Three for the RMAT cost estimates. 
However, RMAT probabilities of successful attack result from the 
adversary’s selecting weapon-target pairings based on a different set of 
consequence estimates than TSA is using to extrapolate expected con-
sequences. It is possible that the adversary would select different attacks 
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or different numbers of parallel attacks and achieve different probabili-
ties of success if TSSRA consequence estimates instead of RMAT con-
sequence estimates were used in the adversary’s calculation of attack 
attractiveness.

A further limitation to the RMAT risk estimates was discussed 
in Chapter Four. Specifically, risk is meaningfully described only over 
some definite time period. Expected losses of $1 million over a year 
would represent twice as much risk as the same losses over two years. 
However, RMAT relative risks are not defined for a specific time 
period. This is partially because RMAT time steps are not calibrated to 
represent time accurately. In addition, however, even if the times asso-
ciated with events in RMAT were well calibrated, RMAT runs until 
an attack occurs or until ten simulation years expire. Each attack could 
take less than a year, or more than a year, but the simulation for the 
trial ends with the attack. If 200 trials lead to 100 successful attacks, 
that corresponds to a 50 percent chance of successful attack over mul-
tiple different time frames. It would not be correct to say it is a 50 per-
cent chance of success over a ten-year time frame, since presumably risk 
does not drop to 0 after an attack attempt as is implied when RMAT 
ends each trial after an attempt. 

In short, RMAT does not produce estimates of absolute risk. 
Its estimates of relative risk reductions are subject to strong, proba-
bly untenable assumptions. Finally, RMAT risks are not defined for 
a coherent time period. For these reasons, we conclude that RMAT 
cannot satisfy TSA’s risk-assessment Requirement 4. 

Requirements 20 and 21 call for risk assessments that can be used 
to support policy and acquisition decisions and for communications 
with GAO and other oversight and stakeholder groups. We believe  
that RMAT could be more effectively used in support of other risk-
assessment tools that might be shared with policymakers, an idea we 
develop in the next section. As such, we rate Requirement 20 as par-
tially met with RMAT. 

Whether RMAT satisfies GAO, NIPP, or other risk-management 
requirements is less clear, in part because the minimum requirements 
for meeting the standards of risk assessment for these organizations 
are not well defined. GAO (2009) has emphasized that TSA needs a 
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way to systematically integrate threat, vulnerability, and consequence 
information in a way that stands up to independent validation. Simi-
larly, the National Research Council (NRC, 2008, 2010) has argued 
that DHS needs risk tools that are transparent, easily communicated, 
well documented, and which have been reviewed satisfactorily through 
journal peer review processes or other rigorous standards of indepen-
dent validation. 

Clearly, RMAT represents an attempt to address GAO concerns 
by systematically integrating threat, vulnerability, and consequence 
information. Similarly, TSA’s interest in requesting an independent 
assessment of the model’s validity takes a step in the direction proposed 
by GAO and the National Academy. 

Models not subject to validation through comparison with a large 
body of empirical evidence may not be valid for prediction but can be 
very useful for helping analysts and decisionmakers explore the nature 
of the phenomena that must be understood and for exploring possible 
implications of alternative assumptions and input values. To serve in 
such an explanatory role, analyses depend very much on transparent 
and valid conceptual models that can be clearly and persuasively com-
municated. RMAT is a highly complex model subject to dozens of 
deep uncertainties, major caveats, and assumptions, all of which make 
easy communication with stakeholders and oversight groups difficult. 

Despite these limitations, we recognize, and we expect that DHS 
and GAO will recognize, that RMAT represents a significant step for-
ward in structuring what all agree is a very difficult and unsolved prob-
lem in a way designed to lead to more reliable risk estimates. For this 
reason, we consider that RMAT partially meets TSA’s requirement for 
risk assessments that will meet the expectations of oversight organiza-
tions (Requirement 21). 

Recommendations: Improving the Use of RMAT and the 
Interpretation of Its Results

To meet some of TSA’s principal intended uses, it should develop an explor-
atory and multiresolution modeling framework in which RMAT could 
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be incorporated. Bigelow and Davis (2003) note that with predictive 
models, analysts typically establish a base case, then test how the future 
is likely to change under a small number of modifications to the base 
case. Whether explicitly or implicitly, this approach treats model out-
puts as reasonable guesses as to how the world would look if it is prop-
erly described by the model’s input conditions. 

In general, predictive models are appropriate when the theory 
guiding the model’s design is well developed and accepted, where the 
typical variation between model predictions and reality can be estab-
lished over multiple trials, and where the data used by the model are 
valid and reliable, except, perhaps, for a small number of variables for 
which sensitivity analysis can be used to highlight their possible impli-
cations for model results (Dewar et al., 1996). 

Where models are subject to deep uncertainties about the mecha-
nisms producing modeled outcomes or parameter values, exploratory 
analysis is more appropriate (Davis, 2002; Davis, Shaver, and Beck, 
2008). With exploratory analysis, base cases are usually irrelevant. 
Instead, the objective is to systematically look across the space of pos-
sibilities created by varying parameter values simultaneously to under-
stand not an average expected outcome but rather the input conditions 
under which the model produces qualitatively different outcomes. 

As the number of uncertain parameters grows, the number of 
possible combinations of input values explodes, so as a practical matter, 
exploratory analysis becomes infeasible or at least dubious with more 
than 10 or 12 uncertain parameters. The problem is not primarily 
the computational burden of the combinatorial explosion of cases but 
rather analysts’ and decisionmakers’ inability to comprehend, reason, 
and communicate coherently and persuasively about results that might 
involve interactions among a great many variables. Decisionmakers 
need to be able to understand the high-level tradeoffs that are most 
important to the outcomes that they are responsible for. A multivari-
ate solution with many dozens of tradeoffs cannot be formulated into 
a useful and communicable narrative that explains how decisions were 
arrived at.

In current practice, RMAT has been used to explore characteris-
tics of aviation system risk such as risk-shifting, to examine the sensi-
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tivity of risk-reduction estimates to some sources of deep uncertainty 
such as adversary capabilities, and it has been used as a predictive 
model when, for instance, RMAT results are used as benefit estimates 
for cost benefit analysis. When RMAT is used as a predictive model, 
TSA has been careful to explore the effects of some deep uncertainties 
on modeled benefits, providing insights for decisionmakers about the 
possible effects of, for instance, adversary skill levels on the risk reduc-
tions expected for new countermeasures. However, these methods nec-
essarily condition results on many other assumptions and caveats that 
are not transparent, and depend on a conceptualization of risk reduc-
tion that does not fully account for important insights from TSA’s risk 
doctrine. 

A better approach is to develop a multiresolution family of models 
(National Research Council, 1997), some of which may be in the same 
overall program (with switches to activate or deactivate optional higher-
resolution modules) and some of which may be fully separate models 
but with known relationships and mechanisms for cross-calibration. 
The different members of such a family will typically have very differ-
ent strengths and shortcomings, as summarized in a white paper done 
in support of Department of Defense modeling and simulation plan-
ning, drawing on suggestions from community-wide meetings (Davis 
and Henninger, 2007). 

The relatively low-resolution members of such a family are analyt-
ically nimble and can be easy to explain and understand; they have far 
fewer input parameters, which can be subjected to detailed exploratory 
analysis (Davis, 2003; Bigelow and Davis, 2003; Dewar et al., 1996; 
Davis, Shaver, and Beck, 2008). Ideally, in such a family, the lower-
resolution models are explicit but approximate abstractions of sound 
higher-resolution models, perhaps with the abstractions chosen for 
analysis in support of a particular decision. In addition to permitting 
a detailed exploration of the parameter space and its implications for 
the pending decision, low-resolution models can improve the transpar-
ency and interpretability of the model for the analyst’s clients. More-
over, in some cases, low-resolution models can help explain seemingly 
paradoxical results from higher-resolution models, or, as illustrated by 
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Bigelow and Davis (2003), they can even be used to identify errors in 
higher-resolution models. 

Where the high-resolution model is solid enough (albeit subject 
to uncertainties), it can be exercised and analyzed statistically to gener-
ate lower-resolution models. RAND analysts have recommended doing 
so in a theory-informed manner, leading to “motivated meta models” 
(Bigelow and Davis, 2003) rather than the more common “response 
surfaces” that do not typically allow for meaningful interpretation. 
An example of a motivated meta model might be the simple regres-
sion models we showed in Chapter Five, which could explain most of 
RMAT results. The point is not that RMAT could be replaced with 
such meta models but rather that the metamodels could be used to help 
decisionmakers understand high-level tradeoffs and explain the ratio-
nale of their decisions. 

RMAT could be used to support compelling and transparent low-
resolution models that could be used for exploratory analysis in ways 
that improve decisionmakers’ intuitions and understanding of choices. 
To illustrate, we will outline a simplified version of such an approach. 
The objective of our example is to provide decisionmakers with infor-
mation useful in deciding whether to invest in a new security pro-
gram that could reduce the likelihood of one type of attack (Attack 
C). Specifically, the analysis should clarify the future conditions under 
which investment in the new security program appears likely to offer 
significant risk-reduction benefits, after accounting for sources of deep 
uncertainty.

There are many variables we cannot estimate well with available 
science or intelligence. Because some of these uncertainties concern, 
for instance, how future unknown threats might materialize, even sub-
ject matter experts do not offer sufficiently credible information that 
our model results could be treated as offering meaningful information 
about the performance of our security systems. Instead, the caveats on 
the deep uncertainties would necessarily be so great as to undermine 
decisionmaker confidence in the modeled results. 

However, the analyst using a low-resolution model built on 
RMAT and other data sources could provide decisionmakers with a 
detailed understanding of how deep uncertainties might affect optimal 



Supporting TSA Management and Investment Decisions with RMAT    117

security decisions. Often, at this high level of analysis, the decision 
problem can be reduced to a small number of key uncertainties. In our 
simple example, for instance, we have identified three key sources of 
uncertainty to examine: 

•	 Indirect economic effects of terrorist attacks. As we noted in Chap-
ter Three, RMAT estimates of indirect consequences focus exclu-
sively on effects experienced by the air transportation industry. 
In truth, however, a broader view of the economy is likely to see 
compensatory growth in other parts of the economy, and the cas-
cading economic effects of both shocks represent a notoriously 
complex problem (Enders, 2007). Moreover, since the choice of 
attacks depends on the attackers’ perception of the likely indi-
rect effects, even the best available economic models of indirect 
costs may be poor proxies for attacker judgments of these effects. 
Therefore, in our illustrative example, we consider a range of pos-
sible indirect costs that span more than an order of magnitude 
(Table 6.1). 

•	 Attacker capabilities. Although we have good intelligence on the 
aspirations and capabilities of some threatening groups, we have 

Table 6.1
Risk Modeling Requirements Satisfied by RMAT

Number Short Description
RMAT Satisfaction 
of Requirements

1 Risk conceptualization should be consistent with TSA 
principles.

Partial

2 Risk reduction should be calculated for a 5–10 year 
planning horizon.

No

4 Risk assessments should provide estimates of absolute 
and relative risk and risk reduction.

No

5 Risk assessments should provide accurate information 
on any uncertainty in model results.

No

20 Risk assessments should provide risk information 
useful for high-priority resource allocation decisions.

Partial

21 Risk assessments should be acceptable to oversight 
and stakeholder organizations.

Partial
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little information on the capabilities they may have in the next 
few years when our new security system could be deployed. More-
over, there may be other groups or individuals with capabilities 
we are not yet aware of. For these reasons, attacker capabilities 
represent another key source of uncertainty that we represent in 
our model as probabilities of success ranging from incompetence 
(almost no chance of success) to high competence (Table 6.2).

•	 Deterrence. Homeland security executives know little about the 
deterrence effects of security systems other than that deterrence 
effects are vitally important (Morral and Jackson, 2009). Because 
so little is known, RMAT assumes that no attack can be deterred. 
That is, RMAT forces attackers to attempt an attack no matter 
how unlikely it is to succeed. Clearly, deterrence effects represent 
a key uncertainty for understanding the effects of any new coun-
termeasure. For our illustrative analysis, we consider three levels 
of deterrence effects: No deterrence effects, medium deterrence 
effects (attackers are deterred from any attack with 25 percent or 
lower chance of success), and high deterrence effects (attackers 
are deterred from any attack with 50 percent or lower chance of 
success). 

For the purposes of this simplified model, we additionally assume 
that the attacker values each death at $7 million and seeks to maxi-
mize expected losses, which can be expressed as the sum of losses from 
deaths, direct costs, and indirect costs multiplied by the probability 
of success. Both of these assumptions could also be treated as sources 
of deep uncertainty, but to simplify this illustrative example, we treat 
them as known. 

Using the data and assumptions described above for our low- 
resolution model, Table 6.2 (Panel A) shows how the three major sources 
of uncertainty affect our baseline risk, or what we believe attackers 
view as the most attractive attacks in the absence of the new technol-
ogy. Across the parameter space defined by our uncertainty variables, 
our low-resolution model shows that there are conditions under which 
all five candidate attacks might be preferred by some attacker, with the 
lowest-capability attacker preferring the less consequential and easier 
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Table 6.2
Example Low-Resolution Model of the Effects of Uncertainty on the Risk 
Reduction Expected from a New Technology (Fabricated Data)

A. Terrorist Baseline Attack Preferences

(low/high indirect cost assumptions)

Deterrence

High D/D C/B

Medium E/E C/C A/B

None C/D C/C A/B

Low Medium High

terrorist capabilities (probability of success)

B. Terrorist Technology Preferences

(low/high indirect cost assumptions)

Deterrence

High D/D B/B

Medium E/E B/D A/B

None C/D A/D A/B

Low Medium High

terrorist capabilities (probability of success)

C. Terrorist Baseline Attack Preference

(low/high indirect cost assumptions)

Deterrence

High 0/0 0/0 96/0

Medium 0/0 309/30 0/0

None 352/0 242/30 0/0

Low Medium High

terrorist capabilities (probability of success)

NOTES: In panel B, red letters highlight adversary preferences that change as a  
result of the new security measure. In Panel C, red cells indicate no risk reduction 
benefits, yellow cells indicate risk reduction benefits only when the adversary 
judges the indirect consequences of attacks to be low, and green cells indicate risk 
reduction benefits regardless of adversary judgments about indirect consequences.
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attacks, C, D, and E, although if low-capability attackers are subject 
to high deterrence effects, they would select none of the five attack 
options. The medium capability attackers prefer attack C if they are 
impossible or hard to deter, or D if subject to high deterrence effects. 
The most capable attackers prefer attack B if they judge indirect con-
sequences to be high, or attack A if they are not easily deterred and 
perceive indirect economic costs to be lower. 

Across the baseline parameter space, attack C appears to be the 
most widely preferred attack. Suppose now that the new security pro-
gram reduces the probabilities of success with attack C by half for all 
attacker types (this, too, is probably an assumption we would want 
to examine in a more complete exploratory analysis). Although the 
expected consequences of attack C are halved, it would be incorrect to 
attribute benefits of this magnitude to the new program, since other 
attacks would likely be substituted by rational terrorists seeking to 
maximize expected consequences. 

Table 6.2 (Panel B) shows attack preferences after introduction of 
the new security program. As expected, in five of six cases where attack 
C was preferred at baseline, the effect of the new security program 
has been to shift preferences to alternative attacks with better expected 
consequences (we have highlighted these substituted attacks in red in 
the table). 

If we had sought to estimate the reduction in losses attributable to 
the new security program by taking our best estimates of each uncer-
tainty parameter and then assuming that we could attribute to the 
program all the reduced losses expected from attacks of type C, we 
would almost certainly overstate the true benefits of the program. For 
instance, if our best estimates settled on a high-capability attacker who 
could not be deterred and who risked causing high indirect costs, we 
would conclude that the new program offers well over $4 billion in 
reduced losses per attack of type C. 

Our low-resolution model offers a potentially more persuasive 
assessment of the likely benefits of a countermeasure than would 
RMAT alone, because it allows inherently unknowable variables to 
range across values spanning the full uncertainty space and because it 
allows for risk displacement onto alternative attacks in response to the 
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new security program, and does so with fairly modest and transparent 
speculation on how attackers might go about making such decisions. 
Specifically, Table 6.3 (Panel C) shows the reduced losses associated 
with the change in attack preferences from baseline (Panel A) to after 
the introduction of the new technology (Panel B). As expected, there 
are many conditions in our uncertainty parameter space under which 
the new program offers no benefits (red cells in Table 6.3). Importantly, 
however, even in those cases where attack C was preferred at baseline, 
the benefits of the new program are more than an order of magnitude 
lower than the $4 billion we calculated from our best estimate solution, 
because it failed to account for attack substitutions. 

In addition to offering a simple and transparent method for 
explaining how risk reduction is likely to accrue from the introduc-
tion of new technology, the low-resolution model offers decisionmak-
ers a candid assessment of how deep uncertainties affect the decision at 
hand. For instance, Panel C highlights that the new technology makes 
unequivocal sense only if we are designing it for terrorists with mid-
range capabilities and only those who are not easily deterred by the risk 
of failure (green cells in Panel C). However, if we think terrorists view 
indirect economic effects as quite low (or, equivalently, they value these 
effects less than deaths and direct economic effects), then the program 
could also make sense for undeterable low-capability attackers or easily 
deterred high-capability attackers (yellow cells). 

Which of these conditions represents a true depiction of current 
and future threats cannot be answered by the analyst with current data 
and information, so they should not be presented to decisionmakers 
as the single best judgment from bad data. Instead, the decisionmaker 
needs to understand what we know well, what we know poorly, and 
how the decision could be affected by uncertainty in the latter. The 
low-resolution model described here offers a means for communicat-
ing this information in a candid way (Requirement 5). Moreover, 
since the low-resolution model is supported by RMAT, TSSRA, and 
potentially other data sources, the analyst can offer the decisionmaker 
more detailed analysis on any assumptions the decisionmaker ques-
tions in the low-resolution model. If, for instance, the decisionmaker 
asks why the low-resolution model constrains the probabilities of suc-
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cess for attack A to be no higher than 0.50, the analyst might explain 
the RMAT analyses and any other considerations used to arrive at that 
value. 

The transparency and face validity of such low-resolution models 
make them appropriate for supporting policy decisions (Requirement 
20) and for communications with external stakeholders (Requirement 
21). Finally, a clear attraction of this type of low-resolution model is 
that it can be easily implement in a spreadsheet, allowing analysts to 
evaluate multiple security options quickly (Requirements 22 and 23).
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CHAPTER SEVEN

Conclusions

TSA policies and investment decisions require judgments that consider 
many competing interests, including effects on 

•	 terrorism risk to the aviation system 
•	 carrier and airport operations and costs
•	 the costs of implementing and maintaining the policy 
•	 privacy, time burdens, and other concerns of travelers.

For considering the effects of new policies on system risk, TSA 
has several important resources, including a risk-management doc-
trine that recognizes many of the challenges of risk assessment when 
confronted with an adaptive adversary, such as many sources of deep 
uncertainty about the adversary’s intentions, capabilities, and meth-
ods; the likelihood that counterterrorism measures may not eliminate 
risks so much as shift risk to different targets; and the likelihood that 
adversaries will develop tactics we have not anticipated (TSA, 2009b). 

RMAT is one tool used by TSA to understand how its risk prin-
ciples, intelligence estimates, and other information can be combined 
to provide quantitative estimates of the likely benefits of new policies 
or investments. Nevertheless, RMAT was not explicitly designed to 
implement current TSA risk doctrine and assumptions. Indeed, at the 
time RMAT was begun, TSA’s approach to risk analysis and risk man-
agement was rudimentary. The process of developing RMAT led TSA 
to an increasingly sophisticated understanding of the nature of the 
threats, vulnerabilities, and possible consequences, as demonstrated in 
its current risk doctrine. As such, RMAT has served one of the objec-
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tives most often supported by complex simulations: It has improved 
understanding and insight into the nature of the phenomena it models.

In this report, we have evaluated whether RMAT provides risk 
assessments that satisfy TSA’s requirements and intended uses. Because 
RMAT was not designed to implement current TSA doctrine or 
requirements, nor were detailed requirements developed to guide its 
original development, we cannot assess whether RMAT meets its origi-
nal objectives. Instead, we have considered whether any of TSA’s cur-
rent risk-assessment requirements can be satisfied by RMAT, and we 
find that RMAT does indeed fully satisfy five and partially satisfy 11 of 
the 19 high- and medium-priority requirements we identified. 

In addition, we have examined how and whether RMAT could 
be used by TSA to support policy and resource allocation decisions. 
Our assessment is that there are appropriate uses that build on RMAT 
strengths but there are some weaknesses too that limit the utility of 
RMAT results for some of TSA’s intended uses. 

RMAT Key Strengths and Weaknesses for TSA Decision 
Support

RMAT is an ambitious attempt to model what is known about the 
decisionmaking process of potential adversaries as a way to anticipate 
current and future threats and terrorist adaptation to new security 
countermeasures. There are few general but detailed theories of ter-
rorist behavior and decisionmaking on which to build such a model. 
RMAT has effectively developed such a theory, which could now serve 
to spur further refinements and elaboration by a wider community 
of analysts and academics. Similarly, in developing the RMAT tool, 
Boeing and TSA have identified many of the factors that might need 
to be understood before detailed models of terrorism risk can provide 
credible estimates. Clarification of these multiple influences on terror-
ism outcomes can also serve to highlight important sources of uncer-
tainty for policymakers, to help subject matter experts provide more 
refined and precise judgments, and to focus intelligence analysts on 
important data that might otherwise go unnoticed. 
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Relatedly, RMAT represents an organized library of current esti-
mates on each of these potentially important underlying phenomena. 
Even without executing a single RMAT run, the tool has value in con-
solidating intelligence information, technical reports, policies and pro-
cedure information, subject matter expert judgments, and other data 
sources on questions relevant to many models and policy questions. 
Assuming that the best available information has been supplied to 
RMAT, it can serve as a valuable resource for other modeling efforts, 
or when answering leadership questions about, for instance, what rea-
sonable estimates of terrorist recruiting rates might be, how hard it is 
for terrorists to build different weapons, or related questions. 

The RMAT model of the air transportation system is a particular 
strength. The current generalized air transportation system modeled in 
RMAT captures the key features relevant to security at most airports. 
If we have good information about an adversary’s capabilities and 
intentions, the RMAT defender model can provide credible estimates 
of the likelihood that the adversary will be detected and interdicted. 
Moreover, modification of the defender model is straightforward, so to 
the extent that they fall within the scope of the RMAT “world,” new 
places, processes, and vulnerabilities can be incorporated. 

As discussed in this report, there are also important limitations 
on the valid use of RMAT results. We have highlighted, for instance, 
important limitations in the theory and data used by the RMAT 
adversary model, such as the assumption that terrorists are seeking to 
maximize expected monetized damages across deaths and direct and 
indirect economic effects; that they discount the importance of psy-
chological or symbolic effects to a value of 0; that they do not consider 
the possibility that their attacks will trigger large one-time government 
costs associated with, for instance, the implementation of new security 
measures or military action; and that the model assumes more recon-
naissance and dry runs on the part of adversaries than is reasonable. 

In many cases, the problems identified with RMAT concern inac-
curacies or imprecision in the model’s input values, roughly 200 of 
which may be estimated incorrectly, rather than problems with the 
model’s structure. One could argue that problems with input variables 
do not invalidate the model, per se, but instead highlight the need 
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for improved data. However, to the extent RMAT has been designed 
to require unknowable or even very difficult-to-know parameters, this 
also reflects a challenge created by the model’s design. 

For instance, the model includes a parameter that can be used to 
quantify the psychological impact of attacks and another that allows 
the user to weight how importantly this parameter figures into the ter-
rorist’s decisionmaking. Because intangible psychological effects such 
as support for foreign policy objectives are extremely difficult to esti-
mate and quantify, they have been set to 0. Nevertheless, the model 
is designed to require that such an estimate produce credible or even 
face-valid results. 

Useful models require careful analysis of what we can and cannot 
know and then devising a strategy for cleverly addressing important 
sources of uncertainty. In the case of psychological effects, for instance, 
it may be that these cannot readily be monetized, so cannot be inte-
grated into an overarching risk score expressed in terms of expected 
losses in dollars. Instead, it may be necessary to conceptualize intangi-
ble psychological effects as a separate dimension of risk. Similarly, inas-
much as quantitative estimates of psychological effects are subject to 
deep uncertainties, developers might explore strategies for illustrating 
how large differences in assumed psychological impacts might affect 
model results. 

RMAT includes many variables that may be difficult or impos-
sible to estimate with precision. Imprecise estimates on these variables 
may lead to model results that are completely wrong. In some cases, 
our sensitivity analyses revealed that these questionably knowable 
parameters exert a strong leverage over model results, as in the case of 
parameters describing terrorists’ perception of the diminishing returns 
on additional parallel attacks, the parameters that dictates how rapidly 
the adversary can update his knowledge of security systems, and the 
parameters terrorists would apply to candidate attacks for purposes of 
judging their relative attractiveness. These and other RMAT param-
eters required by its design are subject to deep uncertainties, requiring 
information beyond what intelligence or academic research can cred-
ibly provide. Although TSA avoids some of these questionable param-
eters by using forced mode in RMAT, which relies more heavily on the 
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defender portions of the model, our sensitivity analysis demonstrates 
that uncertain adversary characteristics continue to exert a powerful 
influence over model outcomes in forced mode. 

As discussed in Chapter Six, the fact that many RMAT param-
eters, their distributions, and even the human and natural processes 
underlying the phenomena are subject to great uncertainty is itself an 
important caveat on the credibility of RMAT results. There is a temp-
tation to believe that because each parameter has been estimated to the 
best of our subject matter experts’ ability, the model results represent 
a best estimate as to how new policies or investments will perform 
in the future. Unfortunately, the presence of deep uncertainties make 
such best estimates poor ones on which to base policy decisions. By  
analogy, even if our best estimate is that the stock of one company will 
outperform the rest of the market, the presence of important sources 
of uncertainty in our judgment should cause us to seek an investment 
strategy that is likely to perform well across a range of possible future 
market conditions. 

Our critique on this point is easily misunderstood, so we want to 
emphasize that we believe that many good and useful policy models 
require the inclusion of parameters that cannot be estimated with 
precision. It would be convenient if the world was simple enough to 
model adequately with highly knowable parameters, but this is rarely 
true. When these less knowable parameters are included in models, 
however, it is necessary to provide users with a comprehensive under-
standing of how uncertainties in the parameter values affect model 
results. Typically, this means evaluating a combination of values on 
each such parameter that span the range of plausible input conditions 
and then highlighting how regions in the spanning set of input con-
ditions produce qualitatively different outcomes. This is not how the 
RMAT uncertain input values have been examined to date, and the 
seemingly large number of uncertain parameters may lead to a very 
large set of outcomes in any spanning set analysis that would strain 
analysts’ efforts to make sense of. 

TSA’s risk doctrine emphasizes the importance of recognizing how 
deep uncertainties can affect estimates of future conditions, suggesting 
the need for TSA “to craft strategies that lessen our vulnerability to 
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uncertainty and to our assumptions about the risks we face” (TSA, 
2008a, p. 16). An important limitation of RMAT is that it cannot be 
easily configured to highlight the importance of deep uncertainties. 
As designed, it has many thousands of input variables, meaning that 
it is not appropriate for exploratory analysis that examines the entire 
parameter space. Moreover, it takes so long to run that neither Boeing 
nor RAND have been able to conduct even a superficial sensitivity 
analysis on all its variables to explore which parameters and assump-
tions may have the greatest influence on model outcomes. Instead, 
RMAT is most appropriate for generating point estimates of risk reduc-
tion implied by the joint effects of many thousands of assumptions and 
parameter estimates, an approach that can provide useful results about 
what could be true but which is less useful for understanding which 
outcomes are likely to occur. 

As discussed in Chapter Six, another limitation on the usefulness 
of RMAT for decision support is the models’ complexity. With thou-
sands of input variables, assumptions, and caveats, RMAT cannot be 
viewed as having strong face validity, although some portions of the 
model, such as the defender model, clearly do have good face validity. 
Neither is it possible to attribute it with the external validity that might 
come from comparing RMAT predictions to empirical data on risk.  
As such, RMAT does not satisfy a general requirement of policy  
analysis models that they be transparent and intelligible (Bigelow and 
Davis, 2003), nor does it meet the TSA’s own requirement for risk-
management methodologies that are transparent (TSA, 2009b, p. 18) 
and can be used to communicate risk assessments with leadership, 
oversight, and stakeholder groups (Requirement 21). 

In addition to these limitations of RMAT results, some of the 
ways RMAT is used can yield misleading findings or conclusions. In 
Chapter Six, for instance, we discussed how failure to use RMAT in 
the competition mode can lead to estimates of the probability of attack 
success that fail to properly account for risk-shifting. Whether deci-
sionmakers can understand caveats about this kind of limitation, and 
mentally adjust RMAT results and the cost benefit analyses they sup-
port to account for risk-shifting, is questionable. 
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As a final limitation, we note that the RMAT software itself 
appears to be somewhat unstable, with errors detected and new updates 
to correct the errors occurring regularly through the course of our work 
with it. This is especially a concern, since the software architecture is 
not modularized in a way that makes error detection and testing easy 
or straightforward. 

RMAT Validity

RMAT has proven to be of great value to TSA in driving a more 
sophisticated understanding of terrorism risks to the air transporta-
tion system. This is an example of the second class of uses we intro-
duced in Chapter One, those designed to facilitate understanding of 
important phenomena and to record, structure, and convey informa-
tion that is complex and not well understood. RMAT aides in struc-
turing TSA’s risk-analysis challenges and offers a repository of subject 
matter expert and other data on many factors of clear importance to 
TSA and security planning. As such, RMAT is like a textbook for TSA 
analysts and decisionmakers who must understand all of the details 
and ideas it describes to do their jobs well. RMAT is clearly valid for 
all these purposes. 

As with all other terrorism risk models, it is not well suited for 
revealing how the future is likely to unfold. Even if the conceptual 
models on which RMAT is built were proven to be correct and com-
prehensive, the input data requirements exceed what subject matter 
experts or science can estimate with precision, and the imprecision 
of those estimates is subject to unknown sources and ranges of error. 
Because it cannot be relied on for such strongly predictive uses, its risk-
reduction estimates for new technologies are of quite limited value for 
high-stakes decisionmaking: Those estimates might be good, or they 
they might be completely wrong, depending on factors we do not yet 
understand. 

Finally, RMAT itself may not be well suited for the kinds of 
exploratory analysis required for high-stakes decision support, because 
of its reliance on such a large number of uncertain parameters and 
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conceptual models, but it can and should be used for supporting devel-
opment of a set of low-resolution models that can be used for explor-
atory analysis. These lower-resolution models can be used to explore 
the effects of uncertainty on decision outcomes but could explicitly 
reference the RMAT conceptual model or results. For example, deci-
sionmakers, oversight organizations, or stakeholder groups review-
ing low-resolution models are likely to question how their parameter 
values or ranges were established. The answer could be that the ranges 
reflect multiple sources of data, including judgments of experts, ranges 
observed across different RMAT runs, and other data. That is, RMAT 
insights into air transportation risk could be abstracted into low- 
resolution models that are better suited for exploratory analysis and 
simpler to explain and understand. 

In addition, some components of RMAT, such as the simulated 
checkpoint, can provide deep and valid insights into the flow of pas-
sengers and the associated accumulation of risk under different sets 
of assumptions. We highlight the checkpoint, because risk here can 
be construed as a simpler accumulation of probabilistic events deter-
mined chiefly by TSA policies. Indeed, Boeing has created a stand-
alone checkpoint emulator that offers a simple probabilistic risk model 
that could be used for this purpose. However, this tool was not a focus 
of this report.

In many ways, therefore, we are suggesting to TSA an idea very 
similar to one Francis Kapper offered to the Department of Defense 
three decades ago: 

The most appropriate and valid objectives for using war games 
and simulations within the DoD context are to: better under-
stand complex phenomena, identify problems, evaluate alterna-
tives, gain new insights, and broaden one’s perspectives. The least 
valid or appropriate objectives for using war games and simula-
tions are to predict combat/crisis outcomes or control broad and 
highly complex programs. (Hartley, 1997, p. 929) 
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APPENDIX 

Requirements for a TSA Risk Assessment 

Table A.1
Requirements for a TSA Risk Assessment

No. Priority Description Chapter

Risk Modeling

1 High Risk estimation should be consistent with all TSA risk-
assessment principles described in the TSA Risk Doctrine v1.1, 
July 2009, and TSA Risk Management Approach, December 
2008. 

6

2 High Risk-reduction estimates for countermeasures should be 
calculated for a 5–10 year acquisition planning horizon, 
taking into account the evolution of defender systems.

6

3 High Risk-assessment methods should specify risk as expected 
losses (L) over some period of time. For adversaries’ probabi-
lity of successful attack, A, and defender consequences given 
a successful attack, C, quantified as estimated number of 
deaths, direct economic damages, and indirect economic 
damages (factoring in resilience and psychological effects), 
the tool should calculate losses as L = A*C.

3

4 High Risk-assessment methods should provide estimates of 
risk and the risk reduction attributable to individual 
countermeasures in terms of both absolute levels of risk and 
relative reductions in comparison to an established baseline. 

6

5 High Risk assessment should provide clear and accurate infor-
mation about any uncertainties in its results as well as any 
dependence of the results on explicit or implicit assumptions.

6

6 Medium Risk assessment should clarify the attack preferences of 
potential adversaries.

2

7 Low Risk assessments should account for the deterrence effects of 
security countermeasures.
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Table A.1—Continued

No. Priority Description Chapter

Adversary Modeling

8 High Risk analyses should conceptualize adversaries as adaptive, 
assessing how risks to the air transportation system and its 
subsystems change as adversaries attempt to evade new or 
existing countermeasures or shift their attacks to alternative 
targets.

2

9 High Risk analyses should represent the behavior of all potential 
adversaries (foreign and domestic; high- and low-skilled) 
using empirical evidence on such adversaries’ behavior or 
widely accepted estimates of their behavior and capabilities. 

2

System Vulnerabilities

10 High The scope of air transportation risk assessments should 
be the U.S. commercial aviation system and those off-
airport/off-aviation locations required to support 
adversarial planning. At a minimum, this should include any 
vulnerabilities at domestic airports associated with incoming 
international air cargo and passengers, the airport perimeter, 
aircraft maintenance, airside operations, domestic cargo, 
vehicle access control, security programs and instruments, 
passenger flow through the airport, airport threat alert 
status, passenger and employee credentialing, baggage 
identification, and key off-airport systems such as air traffic 
control, catering services, contractors, and vendors.  
 
Additional potential air system vulnerabilities, in descending 
order of priority, include international commercial airports, 
major differences between airports, general aviation air 
systems, mass transit systems at airports, cyber vulnerabilities 
(such as Air Traffic Control), and vulnerabilities unique to 
individual airports.

3

11 High Risk assessments should address the aviation security threats 
and vulnerabilities detailed in TSSRA. They should include 
a range of potential insider attacks from airport employees 
and vendors, challenges to airport perimeter security, 
unauthorized access to secure airport areas, landside and 
airside attacks, chemical and biological threats, technological 
spoofing, and operational spoofing.

3

12 Low Risk assessment should account for the possibility of 
unanticipated attack strategies by, for instance, assuming 
that security systems will never be able to lower system risk 
below some minimum level. 

3
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Table A.1—Continued

No. Priority Description Chapter

Security Systems

13 High In calculating risk, methods should account for security 
provided by TSA, carriers, airport operations, local law 
enforcement, and others’ plans, programs, policies and 
procedures. Recognizing that countermeasure effects may  
be interdependent, risk assessments should be able to 
account for the joint effects of all security measures as these 
are implemented, modified, or planned by security providers, 
and the incremental effects of new security measures over 
the baseline risk offered by existing security systems.

3

14 High Risk assessment should represent performance variations 
in security measures resulting from such factors as 
heterogeneity in officer performance (due to skill levels, 
attention, etc.), partial or incomplete deployment of 
security measures within or across airports, unreliability 
of technology systems or processes, or performance 
degredation due to passenger throughput, instrument 
calibration, or other known sources.

3

15 Low The tool should account for the security benefits attributable 
to the initiatives of passengers, bystanders, and other non-
adversaries.

Data Management

16 High Data inputs and outputs for risk-assessment methods should 
be in a common file format that is readable and editable by 
common office productivity software.

5

17 High Risk-assessment methods should be maintained to incorpo-
rate salient changes to the aviation system, countermeasures, 
and threats. They should be sufficiently flexible to incorpo-
rate new information within two weeks of when it becomes 
available.

5

18 Medium Analysts should be able to edit risk-assessment methods to 
alter adversary or aviation system characteristics, including 
the number and characteristics of airport facilities and 
security policies and procedures.

5

19 Medium All data supporting risk assessments, including, but not 
limited to, that regarding threat, vulnerability, consequences, 
instruments, procedures, and the aviation system, should be 
authenticated and traceable.

4
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Table A.1—Continued

No. Priority Description Chapter

Intended Use

20 High Risk assessments should provide TSA with estimates use-
ful for supporting risk-informed investment decisions and 
efforts to prioritize alternative investments in counter-
measures. Support of security allocation decisions across 
transportation modes would satisfy a low priority and 
would require that the tool’s outputs be consistent with 
and comparable to risk estimates produced for other 
transportation modes. 

6

21 High Risk assessment should meet the standards of such oversight 
organizations as OMB, DHS, GAO, or Congress. As such, the 
methods should be sufficiently transparent that they can 
be explained to oversight organizations as well as external 
audiences, including the aviation community.

6

22 High Risk assessment and its supporting analytic process should 
be able to support multiple risk-analysis case studies con-
currently and quick turnaround analyses providing results 
within 14 days of problem formulation to assist TSA in 
mitigating emerging threats.

6

23 Low Risk-assessment methods should be usable by program 
analysts in real time.
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