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Abstract
Sustainable mobility policy for long-distance transportation services should consider emerging
automobiles and aircraft as well as infrastructure and supply chain life-cycle effects in the
assessment of new high-speed rail systems. Using the California corridor, future automobiles,
high-speed rail and aircraft long-distance travel are evaluated, considering emerging
fuel-efficient vehicles, new train designs and the possibility that the region will meet renewable
electricity goals. An attributional per passenger-kilometer-traveled life-cycle inventory is first
developed including vehicle, infrastructure and energy production components. A
consequential life-cycle impact assessment is then established to evaluate existing
infrastructure expansion against the construction of a new high-speed rail system. The results
show that when using the life-cycle assessment framework, greenhouse gas footprints increase
significantly and human health and environmental damage potentials may be dominated by
indirect and supply chain components. The environmental payback is most sensitive to the
number of automobile trips shifted to high-speed rail, and for greenhouse gases is likely to
occur in 20–30 years. A high-speed rail system that is deployed with state-of-the-art trains,
electricity that has met renewable goals, and in a configuration that endorses high ridership
will provide significant environmental benefits over existing modes. Opportunities exist for
reducing the long-distance transportation footprint by incentivizing large automobile trip
shifts, meeting clean electricity goals and reducing material production effects.

Keywords: life-cycle assessment, high-speed rail, transportation, greenhouse gas
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1. Background

Deployment of new and more fuel-efficient transportation
modes is expected in the coming decades. Next generation
automobiles and aircraft are already entering the market.

3 Author to whom any correspondence should be addressed.

Despite major political and economic roadblocks in the
United States, federal, state, and regional transportation
and land-use planners are discussing high-speed rail (HSR)
as a potentially better investment for future mobility.
The discussion of new transportation options is often
coupled with the identification of strategies to help reduce
congestion and travel times. With increasing populations
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and long-distance transportation demand forecasts, HSR
was made a centerpiece of the American Recovery and
Reinvestment Act as a modal diversification strategy. While
several corridors are under study, California in 2008
authorized $9.95 billion in bonds for their 1200 km
system and the state legislature recently approved funding
to start construction. Engineering and planning work are
already underway, with possible groundbreaking in 2013
(CAHSRA 2012). While many technical, legal, economic,
community and political battles loom, the California HSR
(CAHSR) Authority has made significant progress towards
deploying the system, which will connect Sacramento,
San Francisco, Los Angeles and San Diego. In addition
to direct mobility benefits, CAHSR has the potential to
reduce long-distance transportation energy consumption and
air emissions, provided measures are taken to encourage high
ridership, minimize construction effects, and establish clean
electricity contracts (Chester and Horvath 2010).

To understand the comprehensive energy and air
emissions effects of deployment and adoption of CAHSR,
a life-cycle assessment (LCA) framework should be used to
assess future modes in the California corridor. The energy
and environmental tradeoffs of CAHSR have been examined
with then-planned vehicles and fuels (Chester and Horvath
2010) by constructing a life-cycle inventory using information
from CAHSRA (2005), the then-current design data and
with groundbreaking expected around 2010. However, many
new corridor plans and design considerations have been
made warranting new outlooks for the system. Forecasts
for a future long-distance transportation system should
include emerging and expected automobile, aircraft and HSR
improvements. In this study, an environmental assessment of
future long-distance travel is developed using the California
corridor as a case study. We start by developing a per
passenger-kilometer-traveled (PKT) attributional assessment
of future transportation systems that expands the results
of Chester and Horvath (2010) by evaluating (i) emerging
automobiles and aircraft, (ii) new train designs, and (iii) low-
carbon electricity scenarios. We then develop a consequential
assessment for the corridor to determine the net effects of
the decision to build a new HSR system. Following our past
work, we identify the critical system design parameters that
lead to transportation systems having larger or smaller human
and environmental footprints than their competitors. Our goal
is to identify the potential design, construction and operation
pitfalls early so that transportation planners and operators can
reduce future impacts at potentially lower cost.

The goal of this research is to develop a framework
for assessing the environmental effects of long-distance
transportation in the California corridor to provide more
comprehensive measures of the greenhouse gas, human
health and other environmental damage potentials of future
systems. We anticipate that this framework will (i) aid
policy and decision makers in the assessment of long-
distance transportation options, (ii) provide HSR designers,
engineers and operators with information on how to best
reduce environmental damage potentials, and (iii) provide a
standard methodology by which other US and international
transportation systems can be evaluated.

2. Methodology

An environmental assessment is developed for automobiles,
aircraft and HSR operating in the California corridor between
2030 and 2050. When performing an LCA a year of analysis
is generally defined. We choose to evaluate modes in a
two-decade range to acknowledge the uncertainty in adoption
of HSR and the challenges of estimating future life-cycle
process improvements in a single year.

LCA is the preeminent framework for evaluating the
energy and environmental effects of complex systems and
can be used to understand the tradeoffs of transportation
decisions. Life-cycle inventorying (LCI) is one stage of
LCA, the quantification of environmental flows. Impact
assessment must be performed to connect physical flows
to the human health, ecosystem quality, climate change
and resource effects of ultimate interest (ISO 2006, Jolliet
et al 2003). End-use energy and air emissions are first
inventoried. Air emissions include greenhouse gases (GHG)
and conventional air pollutants (SOx, CO, NOx, VOCs, PM10
and PM2.5). GHGs are reported as CO2 equivalence (CO2eq)
using radiative forcing multipliers of 25 for CH4 and 298 for
N2O for a 100 yr horizon. The US Clean Air Act established
a regulatory framework for criteria air pollutants to reduce
direct human and environmental impacts. SO2, CO, NOx,
PM and ozone are regulated through National Ambient Air
Quality Standards. We evaluate NOx and VOCs because they
are ozone precursors.

The LCI results are joined with human and environ-
mental impact characterization factors from the Tool for
the Reduction and Assessment of Chemical and Other
Environmental Impacts (TRACI, v2.03) in the development
of a life-cycle impact assessment (LCIA) (Bare et al 2002).
Impact characterization factors are used to show the maximum
potential effects of pollutant releases. In addition to global
warming (CO2eq), human health respiratory, acidification,
tropospheric ozone (smog) and eutrophication impact poten-
tials are determined. We stress that impact potentials are the
maximum effects that can occur and actual effects may be
lower, or potentials may never turn into damages. However,
given the challenge of combining air transport and chemistry
modeling with concentration-response functions, endpoint
damages have not been determined for this study. Bare et al
(2002) provide background for TRACI and how air emissions
are used to determine impact potentials.

2.1. Efficient and electric automobiles

Improved gasoline efficiency and plug-in hybrid electric
vehicles (PHEV) are expected to have significant market
penetration by 2030 (EPRI 2011). The 2007 US Energy
Independence and Security Act established fleet-wide fuel
economy standards at 35 mpg (15 km l−1) by 2020.
Furthermore, the US EPA and the National Highway Traffic
Safety Administration have proposed a 102 g km−1 CO2
standard for 2025, which is equivalent to a fuel economy
of 54.5 mpg (23 km l−1) (EPA 2011). Given these policies
and trends, it is reasonable to expect future long-distance
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automobile travel to occur in a vehicle that has improved
fuel economy from the 21 mpg (9.6 km l−1) average
today (ORNL 2011). While a fuel economy standard does
not translate to actual onroad performance, the range of
economies modeled is intended to illustrate future potential
performance of improved vehicles. Congestion effects are not
modeled and it is acknowledged that this would increase the
automobile footprint. Second-generation biofuels are likely
to be a widespread transportation fuel in the future (Scown
et al 2012), but we focus on reformulated-gasoline and electric
vehicles.

Vehicle manufacturing, battery manufacturing (including
replacement) and operation are evaluated with the GREET
1 (fuel-cycle) and 2.7 (vehicle-cycle) models (ANL 2011).
A 35 mpg, 1500 kg sedan and a 55 mpg, 900 kg (before
batteries) PHEV (ANL 2011) are modeled to meet future fuel
economy standards. Large battery pack plug-in and battery
electric vehicles are expected to have market penetration
gains in the next decades, and we evaluate a PHEV60
(60 mi, 97 km all electric range) assuming that the first
97 km of a 480 km California long-distance trip are in
charge-depleting mode and the vehicle is configured as a
parallel hybrid drivetrain. GREET models vehicle emissions
with a drive cycle that is 43% city and 57% highway.
Using drive cycle characterizations from Karabasoglu and
Michalek (2012), vehicle emissions are adjusted assuming
that the beginning and ending 24 km of the trip occur
in cities with the remainder occurring on highways. We
believe that our PHEV60 assessment is conservative as
future vehicles may have improved battery energy densities
and intelligent operational controls that more effectively
utilize a blended mode. The PHEV60 is modeled with
one lithium-ion battery replacement and specifications are
consistent with those modeled by Michalek et al (2011).
All automobiles are evaluated with a 260 000 km lifetime.
Brake wear, tire wear and evaporative losses are included.
General maintenance and tire replacement are evaluated using
EIO-LCA (GDI 2011). Lead-acid and lithium-ion battery
replacement are evaluated with GREET. The energy and
environmental effects associated with insurance industry
operation (e.g., electricity consumption, waste management)
are captured using EIO-LCA (GDI 2011).

The energy inputs and air emission outputs generated
by the construction and maintenance of the California
highway (interstate and major arterial) system serve as
the infrastructure basis for future long-distance statewide
travel. There are currently 12 100 km of California highways
facilitating 250 billion annual vehicle-kilometers-traveled
(VKT) (FHWA 2009). Across all California roadways there
are 380 billion annual VKT and this is forecast to increase to
480 billion VKT by 2040 absent a HSR system (CAHSRA
2012). The 74% of asphalt surfaces are specified with a 15 yr
life and concrete surfaces at 25 yr (both surface sub-bases
are assumed to last 100 yr). Material production, transport,
equipment process, and direct emissions from construction
and maintenance activities are modeled with PaLATE (2004).
Roadway construction effects are allocated to vehicles based
on VKT splits and maintenance to heavy duty vehicles since

damage follows a fourth-power relationship to axle load
(Huang 2004). Roadway design specifications, herbicide use
and overhead lighting are included (Chester 2008).

Gasoline vehicle and PHEV60 energy production are
evaluated with GREET and are specified with parameters
commensurate with Michalek et al (2011). California
reformulated gasoline is used, and GREET estimates that
18% of crude oil feedstock will be extracted from oil sands
by 2020. For the PHEV60 and CAHSR, future regional
electricity is used (this is detailed in later sections). Gasoline
and electricity production include raw fuel feedstock inputs,
transportation, processing (or generation) and distribution.

2.2. High-speed rail

HSR effects are determined following the approach of Chester
and Horvath (2010) but updated to acknowledge that a future
CAHSR system will likely see improved train performance
and an opportunity for increased renewable electricity usage.
The assessment by Chester and Horvath (2010) was designed
to evaluate the high-speed rail system specified by CAHSRA
(2005) under a life-cycle lens. CAHSRA (2005) performs
an energy assessment based on large 1200 seat trains
consuming an exaggerated 170 kWh of electricity per
VKT. Despite acknowledging this over-estimate, Chester and
Horvath (2010) chose not to redesign the CAHSRA (2005)
system or challenge the publicized parameters. Given the
uncertainty in the CAHSRA (2005) propulsion electricity
estimate, primary data collection exercises were undertaken
to develop improved electricity consumption estimates for a
future CAHSR train. In this study, we evaluate three train
sizes (400, 670 and 1200 seats) and use actual electricity
consumption outcomes from Deutsche Bahn, instead of
relying on literature. A range of HSR propulsion electricity
exists in the literature and a survey and comparison are
performed in the supplementary information (SI, available
at stacks.iop.org/ERL/7/034012/mmedia). Actual electricity
consumption factors for ICE trains (preliminarily chosen by
CAHSRA 2005) were gathered from Deutsche Bahn (2011)
and correspond to those reported by IFEU (2011) resulting
in 13, 20 and 36 kWh/VKT for the respective train sizes.
Regenerative braking effects are included. It is possible that
the trains deployed in California will be several generations
newer and will consume less electricity, but without data
on future technologies we choose not to make projections,
and instead assume current state-of-the-art technology for
CAHSR.

A study has been performed for the CAHSR Authority to
evaluate the feasibility of deploying wind and solar electricity
to meet system-wide electricity demands (Navigant 2008) and
strategies have been developed to power the stations and trains
with 100% renewable energy (NREL 2011). While funding
for a renewable electricity infrastructure remains uncertain,
this future configuration is considered using existing PV and
solar study LCIs (Pehnt 2006) with an 80% wind and 20%
solar mix.

Vehicle (manufacturing, maintenance and insurance),
infrastructure (construction, operation, maintenance and
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parking), and non-renewable electricity generation scenarios
follow the methodology used in Chester and Horvath
(2010, 2011) and are adjusted for future electricity inputs.
The infrastructure assessment matches the results of Chang
and Kendall (2011) when a commensurate system boundary
is used. Whenever possible, we apply the Western Electricity
Coordinating Council (WECC) electricity mix generation
emission factors to scenario life-cycle components. Without
a contract to purchase electricity from a particular supplier,
electricity consumption by CAHSR should be evaluated in
the WECC reliability network (Marriott and Matthews 2005),
capturing flows across nearby states, including imports to
California. Vehicle and infrastructure effects from WECC
electricity use are based on a mix that has reached 2020
Renewable Portfolio Standards (WECC-RPS) (WECC 2011).
Furthermore, a projected 2040 mix that has reduced coal
inputs resulting in 60% carbon emissions intensity of today
is also included (WECC-2040).

2.3. Next generation aircraft

Midsize aircraft (130–160 seats) were responsible for 79%
of domestic US air travel PKT in 2009 (BTS 2011) and
current and future planes are evaluated to capture significant
improvements in engine fuel use and emissions. A Boeing
737–800 is used to evaluate currently operating state-of-the-
art aircraft. The 737–800 seats 160 and uses CFM56-7B26/2
engines. The Bombardier CS300-ER is an emerging aircraft
that offers 20% fuel savings (and commensurate GHG
savings) and additional emissions reductions over in-service
planes. The CS300-ER will use Pratt and Whitney (PW)
1524G PurePower engines offering propulsive efficiency
gains while carrying up to 130 passengers. For both aircraft,
maintenance and insurance costs are based on 737–800
airframe materials, engine materials, insurance and hourly
costs of employee benefits, reported by BTS (2011). To
provide perspective on energy and environmental gains in air
travel, the 737–800 and CS300-ER are compared against the
legacy Boeing 737 series (<800) which has been a workhorse
of the mid-haul market (Chester and Horvath 2010).

Fuel and emission indices are used to determine
landing–takeoff (LTO) and cruise phase effects for a
San Francisco to Los Angeles flight. In previous studies,
LTO effects were determined with FAA (2010) and cruise
phase with EEA (2006) data. These software and data do
not offer the flexibility or transparency to evaluate future
engine improvements. FAA (2010) reports fuel and emission
indices which are combined with time-in-mode and rated
thrust estimates to determine total flight effects for the 737s.
The CFM56-7526/2 engines on the 737–800 achieve 25%
reductions in CO, 27% in HC, 31% in NOx, and 97% in smoke
emissions relative to CAEP6 engine emission standards
(ICAO 2010). ICAO (2010) does not yet report PW1524G
engine testing results, however, Hoke (2011) reports 64%
reductions in CO, 96% in HC, 58% in NOx, and 50% in
smoke emissions relative to CAEP6 standards, which were
used to determine the CS300-ER flight emissions. Flight LTO
and cruise fuel consumption and emissions were validated

by PW engineers (Pratt and Whitney 2011). Aircraft energy
and environmental effects are determined with fuel and
emission indices and rated thrust estimates by flight phase
(see the SI for details, available at stacks.iop.org/ERL/7/
034012/mmedia). The potential for respiratory, acidification
and eutrophication impacts from non-LTO emissions are
included (Barrett et al 2010, Tarrasón et al 2002).

3. Modal attributional footprinting

The assessment and allocation of direct and ancillary
processes to each transportation mode reveal the life-cycle ac-
tivities that should be targeted for the greatest environmental
improvements. Consistent with existing transportation LCA
studies, results are normalized to a per-PKT functional unit
to evaluate the effectiveness of providing passenger mobility.
For automobiles and CAHSR, a dearth of data exists to
provide a rigorous assessment of expected occupancy rates.
For aircraft, detailed reporting provides strong indicators
for future utilization (BTS 2011). To avoid universally
characterizing modal performance by normalizing to an
average occupancy, reasonable and expected high and low
occupancies are assessed to capture the potential of modes.
For all modes, the high occupancy is the number of seats.
Low occupancies are designed to consider off-peak ridership.
While it is possible for CAHSR and aircraft to operate with
a single passenger, this outlying case is not informative
and therefore not shown. Low occupancy for CAHSR is
approximately one-quarter of seats, and for aircraft is the
lower occupancy quartile in 2009, determined from BTS
(2011). Figure 1 shows global warming and human health
respiratory life-cycle results for each mode for high and low
occupancy.

GHG emissions are dominated by vehicle propulsion
(energy production for CAHSR and vehicle operation for
automobiles and aircraft) but show increases of 38–54% for
automobiles, 77–116% for future CAHSR and 13–34% for
aircraft when all life-cycle components are included. Results
for future long-distance modes are consistent with those
identified in past transportation LCA studies (Chester and
Horvath 2010, 2009) even when new data and modeling
are included (ANL 2011). Automobile vehicle manufacturing
is dominated by steel and plastic use (ANL 2011), and
maintenance effects are largely the result of supply chain
electricity (GDI 2011). CAHSR infrastructure construction
effects are dominated by concrete use. Approximately
67% of CAHSR infrastructure emissions are the result of
cement production for concrete use and 9% are related
to steel production. Automobile infrastructure effects are
small compared to past studies because only highways
are included to isolate long-distance infrastructure. The
inclusion of trip-specific infrastructure provides a clearer
comparison of corridor travel by focusing only on roads,
tracks and airports needed for each trip. Non-propulsion
fuel-cycle effects are primarily the result of refineries, oil
and gas extraction activities, and supply chain electricity use
(ANL 2011, GDI 2011). With distributed hard infrastructure
and its long-distance nature, the life-cycle effects of air
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Figure 1. Global warming and human health respiratory impact potential results per PKT. For each mode, results at long-run average high
and low occupancy (shown in parenthesis) are displayed as juxtaposing bars. Previous research by the authors reported electricity
generation effects for electric vehicle propulsion in the Vehicle Operation life-cycle groupings. In an effort to improve the spatial
characterization of effects, electricity generation for CAHSR propulsion is reported in Energy Production and differentiated from upstream
effects (e.g., emissions from fuel extraction and transport) by a red line. The CAHSRA (2005) train is shaded gray to emphasize that it is an
unlikely outcome, but reported for comparative purposes.

travel are diminished when results are normalized per
PKT. WECC-2040 electricity reduces HSR GHG propulsion
emissions by 26% but infrastructure construction effects
continue to add heavy burdens to life-cycle results showing
the need for low-CO2 materials.

Across modes and life-cycle groupings, PM10 emissions
are often generated by mining activities for raw materials,
and PM2.5 emissions by supply chain combustion processes
including electricity generation, the latter contributing to
human health respiratory impact potentials. While PHEV60s
produce fewer PM2.5 emissions during propulsion, battery
manufacturing and associated electricity requirements have
the potential to contribute significant PM2.5 and SOx
emissions and increase respiratory impacts beyond the
35 mpg sedan. This implies that strategies should be
developed that minimize human and environmental exposure
as the battery industry expands, and that meeting or
exceeding RPS standards will reduce impacts across
automobiles and CAHSR. For CAHSR, concrete and
steel production including upstream mining activities are
larger than propulsion effects. The dominating share of
environmental impact potentials are often in non-propulsion
components and are shown in figure 2.

Several common processes dominate the environmental
impact potentials. Vehicle manufacturing and maintenance
are affected by assembly activities, but are dominated by
the use of metals (i.e., steel, aluminum and copper) and its
associated electricity demands for processing. Supply chain
truck transport for these processes also contributes heavily
to CO, NOx and VOC emissions. Asphalt and concrete use
dominate infrastructure construction and the use of these
materials is affected primarily by direct emissions at hot-mix
asphalt and cement kilns, and their associated electricity
demands. Airport ground support equipment use contributes
heavily to aircraft life-cycle results. For automobiles and

aircraft, fuel production effects are largely the result of
refinery electricity demands and extraction activities, and for
HSR are dominated by primary fuel extraction, processing
and transport. Air pollutant emission reductions may achieve
the largest benefit-to-cost ratio by targeting infrastructure and
supply chain effects.

Assuming that options exist, the decision by a traveler
to take a mode produces marginal effects in the short-
run, a subset of those reported in figures 1 and 2.
For example, the decision to walk instead of driving
immediately avoids fuel consumption and emissions from
vehicle operation. Including mid-run life-cycle components
avoids vehicle manufacturing, vehicle maintenance, vehicle
insurance, infrastructure maintenance, and associated supply
chain effects including fuel refining. Ultimately, a critical
mass of travelers choosing to walk instead of drive would have
long-run effects including reductions in roadway capacity
needs avoiding future infrastructure construction. Marginal
effects are critical for understanding the change in energy or
environmental outcomes from a policy or decision. Long-run
average effects are reported to provide a comprehensive set
of indicators for analysts, however, future analyses with
these results should consider marginal effects at specified
timescales. Long-, mid- and short-run average and marginal
comparisons are presented in the SI (available at stacks.iop.
org/ERL/7/034012/mmedia).

Considering the potential of a mode to environmentally
outperform another is critical to developing strategies that
acknowledge different long-term operating characteristics.
Modal potential considers the occupancy range in which
transportation systems operate instead of averages which
can mask peak and off-peak, position along lines and
day-of-week characteristics, to name a few. Future CAHSR
ridership forecasts have been developed and scrutinized
(Brownstone et al 2010). Designs that do not access airports
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Figure 2. Environmental impact potentials per PKT.

and city centers, hub existing transit at HSR stations and
encourage urban infill are inimical to high ridership, and risk
disincentivizing trip takers switching from autos. Technical,
political, community and economic roadblocks exist for many
high ridership configuration options that could ultimately lead
to lower than optimal adoption outcomes. Furthermore, even
with high ridership configurations, the system will at times
(whether during off-peak or end-of-lines) exhibit fluctuations
and these instances should be considered in policies that target
marginal operation. Given the large uncertainty in a future
HSR system’s ridership, figure 3 shows the CAHSR life-cycle
and vehicle propulsion effects at varying occupancy levels
against a current mean occupancy automobile and midsize
aircraft (represented as a 2.2 passenger 35 mpg sedan and 116
passenger 737–800).

The sensitivity to vehicle occupancy is used to illustrate
breakeven points, or the ridership levels where one mode
is equivalent to another in the long-run. Occupancy levels
of between 80 and 280 passengers produce HSR GHG-
equivalency to future automobiles or aircraft (depending
on train size). However, for acidification potential, this
equivalency increases to between 160 and 420 passengers,
or roughly 35–40% average occupancy for trains. This
assumes that the WECC has met the RPS. The acidification
breakeven points capture the dynamic of mode switching
from low-sulfur liquid fuels to high-sulfur electricity and

reaffirm the findings of Chester and Horvath (2010) that
deployment of HSR should occur with mandates for cleaner
propulsion electricity sources to avoid increased human
and environmental impact potentials. The breakeven point
assessment highlights the importance of future ridership
scenario considerations in the determination of potential
corridor effects.

4. Regional consequential effects

To evaluate the net effects of the decision to implement
a new system in the corridor, a consequential assessment
is developed. A consequential assessment should compare
a without HSR future where additional automobile and
aircraft capacities are needed to meet growing demands
to a with HSR future where the new rail system reduces
the need to fully build this capacity. Estimates of this
capacity expansion have been produced by the Authority
(PB 2011) and the LCA methods can be used to evaluate
the change in effects in the corridor. The per-PKT results
reported in figures 1 and 2 are valuable for understanding
the footprint of each transportation system in the long-run
but do not allow for direct assessment of the changes in
corridor impacts when a new system is implemented. For
example, an infrastructure will be constructed to facilitate an

6
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Figure 3. CAHSR global warming and acidification potential sensitivity to vehicle occupancy. Life-cycle results are shown as solid colored
lines and vehicle propulsion as dotted. Breakeven points are shown as red and green shapes on the figure and corresponding ridership levels
are shown on the right side. While average occupancies are shown for the 35 mpg sedan and 737–800, their potential ranges are shown as
vertical lines on the right side.

expected level of service for CAHSR. This infrastructure may
be flexible to accommodate more passengers if demand is
greater than anticipated. Yet if the per-PKT GHG results in
figure 1 are applied to the different PKT demand forecasts,
different net infrastructure construction effects would be
falsely determined (i.e., the infrastructure construction effects
remain the same with different ridership outcomes). While
the attributional assessment can inform questions like: what
are the major energy and environmental processes in the
life-cycle of a transportation system, and how can they most
effectively be reduced? A consequential assessment is needed
to answer questions such as: how can California deploy
a future multi-modal transportation system with the lowest
human and environment impacts?

The energy and environmental costs of a new HSR
system should be compared against the avoided costs of
automobile and air infrastructure expansion, assuming there
is long-distance travel demand growth. PB (2011) estimated
that 3600 freeway lane km and 13 000 m of runways, and 115
additional airport gates are needed to meet growing corridor
demand in the coming decades. This is the only assessment of
future infrastructure expansion needs to date and it is possible
that this is an aggressive estimate. PB (2011) estimates are
based on full corridor future capacity (117 million auto and
air trips) and the most recent forecasts estimate 33 million
HSR trips at high ridership. Therefore, 28% of infrastructure

expansion effects are considered (i.e., 1000 lane km, 3600 m
of runways and 32 additional airport gates) to account for only
the avoided effects of HSR travelers and may be an aggressive
allocation because of induced demand. Using roadway design
guidelines (AASHTO 2001), construction and maintenance
energy and emissions were calculated with PaLATE (2004)
following Chester and Horvath (2009). The runway expansion
would come with an estimated 670 000 m2 of taxiways and
tarmacs. Construction and maintenance of concrete runways
and asphalt taxiways and tarmacs are also evaluated with
PaLATE (2004) using dimensions reported by Chester (2008).
For all surfaces, it is assumed that the wearing courses will last
20 yr and subbases 50 yr. It is also assumed that infrastructure
expansion will start 10 yr after it has been decided not to
build HSR, and will occur over 30 yr. Airport gate and
corresponding concourse expansion construction follow the
methodology of Chester (2008). Detailed construction and
maintenance schedules for the infrastructure expansion are
provided in the SI (available at stacks.iop.org/ERL/7/034012/
mmedia).

Consequential effects are highly sensitive to modal shifts
and forecasting of HSR energy and environmental effects
should occur with uncertainty assessment. Forecasts for
CAHSR adoption have only been reported by the Authority
making rigorous uncertainty assessment challenging. Adop-
tion discussions by the Authority have been presented through
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Figure 4. Decadal (D) consequential global warming and acidification potentials including payback for phase 1. O/P = operation and
propulsion components (impacts from energy consumed to move vehicles). LC = life-cycle (excludes operation and propulsion
components). Life-cycle effects are separated by infrastructure expansion (yellow background) and non-infrastructure (e.g., vehicle
manufacturing and maintenance). After each ridership forecast (shown in millions (m) of annual trips in 2040), the 50 yr savings are shown
in parentheses. These savings are the GHG or acidification benefit (negatives are costs) after 50 yr from groundbreaking.

Figure 5. Energy and emission control strategies for reducing environmental impacts per VKT.

without HSR and with HSR forecasts. The consequential
assessment considers the difference between these two,
essentially, what environmental changes have occurred in
California as a result of implementing HSR. The current fore-
casts report that by 2040 CAHSR Phase 1 (San Francisco to
Los Angeles) will perform between 27 and 41 million annual
VKT (PB 2012a). The Authority’s medium with HSR forecast
(34 million HSR VKT) displaces 5.8 billion auto VKT and
5.1 million air trips annually, generating between 20 and 33
million trips on the new mode (PB 2012a, 2012b). Using
these forecasts, the Authority’s medium (middle) projection
is first evaluated to determine the consequential effects at
full adoption in 2040. The WECC-RPS 670 seat HSR train
is compared against displaced travel in a 35 mpg sedan and

737–800 aircraft (assumed to be reasonable representative
vehicles for 2040). In the without HSR scenario, it is estimated
that auto travel will increase from 380 billion VKT today to
480 billion VKT, and air travel will increase to 33 million trips
(PB 2012b).

The deployment of CAHSR will create induced demand
as a subset of trip takers who would not travel by auto
or air now find the generalized cost for the journey lower
than existing options (Outwater et al 2010). Additionally,
access to and from HSR stations by autos and other modes
may induce new system-wide demand. The CAHSRA (2012)
with HSR forecast includes estimates of new trips and these
are bundled in the aforementioned VKT. We model induced
demand implicitly through the change in travel reported by
CAHSRA (2012). A summary of the with HSR and without
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HSR consequential analysis critical parameters is provided in
the SI (available at stacks.iop.org/ERL/7/034012/mmedia).

The consequential assessment evaluates the difference
between a future where CAHSR has or has not been con-
structed. Figure 4 shows the GHG and acidification potential
for operation/propulsion and other life-cycle (including the
avoided expansion of auto and air infrastructure) effects
aggregated per decade for Phase 1 of the system (San
Francisco to Los Angeles). The cumulative effect curve shows
the time until payback. Given the uncertainty in the forecasts
(Brownstone et al 2010), a payback sensitivity analysis is
performed on the high adoption scenario as reported by
the Authority (41 million VKT). The sensitivity analysis
evaluates how long it takes CAHSR to achieve payback given
certain adoption levels (for perspective, the Authority’s low
adoption scenario is 66% of ridership in the high adoption
scenario) and considers the high (H), medium (M) and low
(L) scenarios followed by decreases of 5 million (m) annual
riders.

The payback sensitivity reveals several important
considerations for transportation planners and air quality
policy makers. The cumulative plum-colored lines for the
high, medium and low forecast figures show that the GHG
payback will likely occur between 20 and 30 yr (D3) after
groundbreaking and acidification potential after 20–40 yr.
However, payback is highly sensitive to reduced automobile
travel. The 5.8 billion auto VKT displaced dominate
emissions changes in the corridor and the effects from
reduced air travel and CAHSR are small. The reduced auto
impacts are significantly affected or dominated by life-cycle
components, in particular, avoided vehicle manufacturing,
vehicle maintenance and gasoline production. For GHGs
the sooner the system is implemented the more opportunity
it will have to help meet GHG reduction policies aiming
for 80% of 1990 statewide emissions by 2050. Larger
trains or more carbon-intensive electricity generation will
delay the payback further. Acidification, the release of SOx
and NOx emissions which are of concern for respiratory
and cardiovascular (through secondary particle formation)
effects, agricultural impacts and increased built environment
maintenance costs, are dominated by life-cycle processes. For
infrastructure life-cycle processes acidification is dominated
by the combustion of sulfur-bearing compounds in clinker
manufacturing for cement used in concrete freeways, and for
non-infrastructure life-cycle processes supply chain electricity
use. Ultimately, impacts should account for the time-based
radiative forcing of GHGs, high-altitude CO2 emissions
effects, and the shifting of human and environmental effects
from vehicle tailpipes to powerplants, to name a few
additional factors. We reserve these analyses for future
studies. The results of the consequential assessment are highly
sensitive to automobile trips avoided and efforts should be
made to validate the travel demand model used by the
Authority.

5. Strategies for reducing environmental impacts

Given the dominating HSR life-cycle effects from electricity
generation and infrastructure construction, strategies can

be identified to reduce the system’s footprint, prior to
its construction and use. First, by meeting the RPS,
GHG and NOx emissions will be reduced by 12% and
22%. Next, emission control strategies are identified for
reducing the infrastructure footprint. For GHGs, the use
of supplementary cementitious materials (SCMs) such as
fly ash or ground granulated blast furnace slag can reduce
concrete’s footprint by 14–22% depending on the mixture
(Flower and Sanjayan 2007). It is expected that the portion
of the infrastructure that impacts roadways will be required to
use fly ash to meet California Department of Transportation
requirements. Furthermore, if the Authority requires concrete
producers to utilize cement kilns with selective catalytic and
non-catalytic reduction (SR) advanced NOx controls, material
production emissions can be decreased between 35 and 95%,
reducing the potential for acidification, respiratory, smog and
eutrophication potential impacts (EPA 2007). Lastly, the use
of 100% renewables lowers electricity generation impacts
(to only power generation facility construction effects) and
combined with the infrastructure control strategies produces
the greatest reductions. The effects of these strategies are
shown in figure 5.

The impact reduction strategies can decrease GHGs
between 12 and 69% and NOx emissions between 22 and
61%. The costs of implementing these strategies should
be compared against other opportunities, particularly those
identified by GHG and air quality policies. The 80/20
Wind/Solar train, outside of the infrastructure material
footprint, has a payback within the first few years of operation
and is equivalent to the GHG assessment developed by
the Authority, based on NREL (2011), following California
Environmental Quality Act requirements.

The transportation emissions reduction from CAHSR, if
operating within a cap-and-trade system, should be evaluated.
Cap-and-trade programs have been successfully implemented
in the US for NOx and SOx, and California continues to
discuss a GHG initiative. Cap-and-trade programs remove the
potential of any single initiative to reduce aggregate emissions
as offsets will be met by increases elsewhere in the economy
(Millard-Ball 2009). This is because the cap is designed to
equalize the marginal abatement cost and does not encourage
each economic sector to undertake reductions. Furthermore,
if road and rail emissions are part of the cap but aircraft
emissions are not, then the only major GHG change resulting
from HSR implementation will be the displaced airplane
operational emissions. To meet GHG reduction goals, policy
makers should consider where CAHSR potential reductions
will be counted, whether that is in a cap-and-trade program or
direct transportation mandates.

6. Planning for a sustainable mobility future

HSR has the potential to reduce passenger transportation
impacts to people and the environment, but must be deployed
with process and material environmental reduction measures
and in a configuration that will ensure high adoption. We
have highlighted the life-cycle hotspots that dominate modal
success: (i) train size (affecting electricity consumption,
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frequency of service and ridership); (ii) infrastructure
construction; and (iii) the fossil fuel intensity of the electricity
mix. By identifying low and high adoption outcomes, the
potential benefits can be discussed, instead of speculating
on a normative long-distance transportation future, especially
in light of large uncertainty that surrounds many critical
factors of the system. Ultimately, this research aims to inform
planners and decision makers about providing sustainable
mobility options. Planners and policy makers should be asking
how a future sustainable transportation infrastructure can
be deployed to meet increasing travel demands with the
lowest total cost, including externalities. The environmental
benefits of HSR should be joined with other considerations
when making decisions about the system. Ultimately,
decision assessment should include changes in travel time,
productivity, congestion, safety, transportation infrastructure
resilience, freight synergies, urban development opportunities
and employment, in addition to GHG, human health and
environmental damages.
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