# URBAN MOBILITY REPORT2010









# TTI's 2010 URBAN MOBILITY REPORT Powered by INRIX Traffic Data

David Schrank Associate Research Scientist

> Tim Lomax Research Engineer

> > and

Shawn Turner Senior Research Engineer

Texas Transportation Institute The Texas A&M University System <u>http://mobility.tamu.edu</u>

December 2010

## **DISCLAIMER**

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation University Transportation Centers Program in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

## Acknowledgements

Pam Rowe and Michelle Young—Report Preparation Lauren Geng, Nick Koncz and Eric Li—Geographic Information System Assistance Greg Larson—Methodology Development Tobey Lindsey—Web Page Creation and Maintenance Richard Cole, Rick Davenport, Bernie Fette and Michelle Hoelscher—Media Relations John Henry—Cover Artwork Dolores Hott and Nancy Pippin—Printing and Distribution Rick Schuman, Jeff Summerson and Jim Bak of INRIX—Technical Support and Media Relations

Support for this research was provided in part by a grant from the U.S. Department of Transportation University Transportation Centers Program to the University Transportation Center for Mobility (DTRT06-G-0044).

## **Table of Contents**

| 2010 Urban Mobility Report<br>The Congestion Trends |    |
|-----------------------------------------------------|----|
| One Page of Congestion Problems                     |    |
| More Detail About Congestion Problems               |    |
| Congestion Solutions – An Overview of the Portfolio |    |
| Congestion Solutions – The Effects                  | 13 |
| Benefits of Public Transportation Service           | 13 |
| Better Traffic Flow                                 | 14 |
| More Capacity                                       | 15 |
| Freight Congestion and Commodity Value              | 17 |
| The Next Generation of Freight Measures             |    |
| Methodology – The New World of Congestion Data      | 19 |
| Future Changes                                      | 19 |
| Concluding Thoughts                                 | 21 |
| Solutions and Performance Measurement               | 21 |
| National Congestion Tables                          | 22 |
| References                                          | 53 |

## Sponsored by:

University Transportation Center for Mobility – Texas A&M University
 National Center for Freight and Infrastructure Research and Education (CFIRE) – University of Wisconsin
 American Road & Transportation Builders Association – Transportation Development Foundation
 American Public Transportation Association
 Texas Transportation Institute

## 2010 Urban Mobility Report

This summary report describes the scope of the mobility problem and some of the improvement strategies. For the complete report and congestion data on your city, see: <u>http://mobility.tamu.edu/ums</u>.

Congestion is still a problem in America's 439 urban areas. The economic recession and slow recovery of the last three years, however, have slowed the seemingly inexorable decline in mobility. Readers and policy makers might be tempted to view this as a change in trend, a new beginning or a sign that congestion has been "solved." However, the data do not support that conclusion.

- First, the problem is very large. In 2009, congestion caused urban Americans to travel 4.8 billion hours more and to purchase an extra 3.9 billion gallons of fuel for a congestion cost of \$115 billion.
- Second, 2008 appears to be the best year for congestion in recent times; congestion worsened in 2009.
- Third, there is only a short-term cause for celebration. Prior to the economy slowing, just 3 years ago, congestion levels were much higher than a decade ago; these conditions will return with a strengthening economy.

There are many ways to address congestion problems; the data show that these are not being pursued aggressively enough. The most effective strategy is one where agency actions are **complemented** by efforts of businesses, manufacturers, commuters and travelers. There is no **rigid prescription** for the "best way"—**each region** must identify the projects, programs and policies that achieve goals, solve problems and capitalize on opportunities.

| Measures of                                      | 1982  | 1999  | 2007  | 2008  | 2009  |
|--------------------------------------------------|-------|-------|-------|-------|-------|
| Individual Congestion                            |       |       |       |       |       |
| Yearly delay per auto commuter (hours)           | 14    | 35    | 38    | 34    | 34    |
| Travel Time Index                                | 1.09  | 1.21  | 1.24  | 1.20  | 1.20  |
| Commuter Stress Index                            |       |       | 1.36  | 1.29  | 1.29  |
| "Wasted" fuel per auto commuter (gallons)        | 12    | 28    | 31    | 27    | 28    |
| Congestion cost per auto commuter (2009 dollars) | \$351 | \$784 | \$919 | \$817 | \$808 |
| The Nation's Congestion Problem                  |       |       |       |       |       |
| Travel delay (billion hours)                     | 1.0   | 3.8   | 5.2   | 4.6   | 4.8   |
| "Wasted" fuel (billion gallons)                  | 0.7   | 3.0   | 4.1   | 3.8   | 3.9   |
| Truck congestion cost (billions of 2009 dollars) |       |       | \$36  | \$32  | \$33  |
| Congestion cost (billions of 2009 dollars)       | \$24  | \$85  | \$126 | \$113 | \$115 |
| The Effect of Some Solutions                     |       |       |       |       |       |
| Yearly travel delay saved by:                    |       |       |       |       |       |
| Operational treatments (million hours)           |       |       | 363   | 312   | 321   |
| Public transportation (million hours)            |       |       | 889   | 802   | 783   |
| Yearly congestion costs saved by:                |       |       |       |       |       |
| Operational treatments (billions of 2009\$)      |       |       | \$8.7 | \$7.6 | \$7.6 |
| Public transportation (billions of 2009\$)       |       |       | \$22  | \$20  | \$19  |

Exhibit 1. Major Findings of the 2010 Urban Mobility Report (439 U.S. Urban Areas) (Note: See page 2 for description of changes since the 2009 Report)

Yearly delay per auto commuter – The extra time spent traveling at congested speeds rather than free-flow speeds by private vehicle drivers and passengers who typically travel in the peak periods.

Travel Time Index (TTI) – The ratio of travel time in the peak period to travel time at free-flow conditions. A Travel Time Index of 1.30 indicates a 20-minute free-flow trip takes 26 minutes in the peak period.
 Commuter Stress Index – The ratio of travel time for the peak direction to travel time at free-flow conditions. A

TTI calculation for only the most congested direction in both peak periods.

Wasted fuel - Extra fuel consumed during congested travel.

Congestion cost – The yearly value of delay time and wasted fuel.

## The Congestion Trends (And the New Data Providing a More Accurate View)

This *Urban Mobility Report* begins an exciting new era for comprehensive national congestion measurement. Traffic speed data from INRIX, a leading private sector provider of travel time information for travelers and shippers, is combined with the traffic volume data from the states to provide a much better and more detailed picture of the problems facing urban travelers. Previous reports in this series have included more than a dozen significant methodology improvements. This year's report is the most remarkable "game changer;" the new data address the biggest shortcoming of previous reports.

INRIX (1) anonymously collects traffic speed data from personal trips, commercial delivery vehicle fleets and a range of other agencies and companies and compiles them into an average speed profile for most major roads. The data show conditions for every day of the year and include the effect of weather problems, traffic crashes, special events, holidays, work zones and the other congestion causing (and reducing) elements of today's traffic problems. TTI combined these speeds with detailed traffic volume data (2) to present an unprecedented estimate of the scale, scope and patterns of the congestion problem in urban America.

The new data and analysis changes the way the mobility information can be presented and how the problems are evaluated. The changes for the 2010 report are summarized below.

- Hour-by-hour speeds collected from a variety of sources on every day of the year on most major roads are used in the 101 detailed study areas and the 338 other urban areas. For more information about INRIX, go to <u>www.inrix.com</u>.
- An improved speed estimation process was built from the new data for major roads without detailed speed data. (See the methodology descriptions on the Report website – <u>mobility.tamu.edu</u>).
- The data for all 24 hours makes it possible to track congestion problems for the midday, overnight and weekend time periods.
- A revised congestion trend has been constructed for each urban region from 1982 to 2009 using the new data as the benchmark. Many values from previous reports have been changed to provide a more accurate picture of the likely patterns (Exhibit 2).
- Did we say 101 areas? Yes, 11 new urban regions have been added, including San Juan, Puerto Rico. All of the urban areas with populations above 500,000 persons are included in the detailed area analysis of the 2010 Urban Mobility Report.
- Three new measures of congestion are calculated for the 2010 report from the TTI-INRIX dataset. These are possible because we have a much better estimate about when and where delay occurs.
  - Delay per auto commuter the extra travel time faced each year by drivers and passengers of private vehicles who typically travel in the peak periods.
  - Delay per non-peak traveler the extra travel time experienced each year by those who travel in the midday, overnight or on weekends.
  - Commuter Stress Index (CSI) similar to the Travel Time Index, but calculated for the worst direction in each peak period to show the time penalty to those who travel in the peak directions.
- Truck freight congestion is explored in more detail thanks to research funding from the National Center for Freight and Infrastructure Research and Education (CFIRE) at the University of Wisconsin (<u>http://www.wistrans.org/cfire/</u>).

|      |                         |                                  |                                      |                                                 |                                      |                                                                       | Hours SavedGallons Savedmillion hours)(million gallons) |                                                                       |                  | Dollars S<br>(billions of                                             |                  |
|------|-------------------------|----------------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|------------------|-----------------------------------------------------------------------|------------------|
| Year | Travel<br>Time<br>Index | Delay per<br>Commuter<br>(hours) | Total<br>Delay<br>(billion<br>hours) | Total<br>Fuel<br>Wasted<br>(billion<br>gallons) | Total<br>Cost<br>(2009\$<br>billion) | Operational<br>Treatments<br>& High-<br>Occupancy<br>Vehicle<br>Lanes | Public<br>Transp                                        | Operational<br>Treatments<br>& High-<br>Occupancy<br>Vehicle<br>Lanes | Public<br>Transp | Operational<br>Treatments<br>& High-<br>Occupancy<br>Vehicle<br>Lanes | Public<br>Transp |
| 1982 | 1.09                    | 14.4                             | 0.99                                 | 0.73                                            | 24.0                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1983 | 1.09                    | 15.7                             | 1.09                                 | 0.80                                            | 26.0                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1984 | 1.10                    | 16.9                             | 1.19                                 | 0.88                                            | 28.3                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1985 | 1.11                    | 19.0                             | 1.38                                 | 1.03                                            | 32.6                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1986 | 1.12                    | 21.1                             | 1.59                                 | 1.20                                            | 36.2                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1987 | 1.13                    | 23.2                             | 1.76                                 | 1.35                                            | 40.2                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1988 | 1.14                    | 25.3                             | 2.03                                 | 1.56                                            | 46.1                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1989 | 1.16                    | 27.4                             | 2.22                                 | 1.73                                            | 50.8                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1990 | 1.16                    | 28.5                             | 2.35                                 | 1.84                                            | 53.8                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1991 | 1.16                    | 28.5                             | 2.41                                 | 1.90                                            | 54.9                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1992 | 1.16                    | 28.5                             | 2.57                                 | 2.01                                            | 58.5                                 | The ne                                                                | w analysis                                              | procedures were                                                       | not applie       | d to the older                                                        |                  |
| 1993 | 1.17                    | 29.6                             | 2.71                                 | 2.11                                            | 61.3                                 |                                                                       |                                                         | port data series                                                      |                  |                                                                       |                  |
| 1994 | 1.17                    | 30.6                             | 2.82                                 | 2.19                                            | 63.9                                 | measu                                                                 |                                                         |                                                                       | •                |                                                                       |                  |
| 1995 | 1.18                    | 31.7                             | 3.02                                 | 2.37                                            | 68.8                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1996 | 1.19                    | 32.7                             | 3.22                                 | 2.53                                            | 73.5                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1997 | 1.19                    | 33.8                             | 3.40                                 | 2.68                                            | 77.2                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1998 | 1.20                    | 33.8                             | 3.54                                 | 2.81                                            | 79.2                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 1999 | 1.21                    | 34.8                             | 3.80                                 | 3.01                                            | 84.9                                 |                                                                       |                                                         |                                                                       |                  |                                                                       |                  |
| 2000 | 1.21                    | 34.8                             | 3.97                                 | 3.15                                            | 90.9                                 | 190                                                                   | 720                                                     | 153                                                                   | 569              | 3.5                                                                   | 13.8             |
| 2001 | 1.22                    | 35.9                             | 4.16                                 | 3.31                                            | 94.7                                 | 215                                                                   | 749                                                     | 173                                                                   | 593              | 4.2                                                                   | 14.8             |
| 2002 | 1.23                    | 36.9                             | 4.39                                 | 3.51                                            | 99.8                                 | 239                                                                   | 758                                                     | 195                                                                   | 606              | 4.8                                                                   | 15.1             |
| 2003 | 1.23                    | 36.9                             | 4.66                                 | 3.72                                            | 105.6                                | 276                                                                   | 757                                                     | 222                                                                   | 600              | 5.5                                                                   | 15.2             |
| 2004 | 1.24                    | 39.1                             | 4.96                                 | 3.95                                            | 114.5                                | 299                                                                   | 798                                                     | 244                                                                   | 637              | 6.3                                                                   | 16.9             |
| 2005 | 1.25                    | 39.1                             | 5.22                                 | 4.15                                            | 123.3                                | 325                                                                   | 809                                                     | 260                                                                   | 646              | 7.2                                                                   | 18.1             |
| 2006 | 1.24                    | 39.1                             | 5.25                                 | 4.19                                            | 125.5                                | 359                                                                   | 845                                                     | 288                                                                   | 680              | 8.2                                                                   | 19.7             |
| 2007 | 1.24                    | 38.4                             | 5.19                                 | 4.14                                            | 125.7                                | 363                                                                   | 889                                                     | 290                                                                   | 709              | 8.7                                                                   | 21.5             |
| 2008 | 1.20                    | 33.7                             | 4.62                                 | 3.77                                            | 113.4                                | 312                                                                   | 802                                                     | 254                                                                   | 655              | 7.6                                                                   | 19.7             |
| 2009 | 1.20                    | 34.0                             | 4.80                                 | 3.93                                            | 114.8                                | 321                                                                   | 783                                                     | 263                                                                   | 641              | 7.6                                                                   | 18.8             |

Note: For more congestion information see Tables 1 to 9 and http://mobility.tamu.edu/ums.

# **One Page of Congestion Problems**

Travelers and freight shippers must plan around traffic jams for more of their trips, in more hours of the day and in more cities, towns and rural areas than in 1982. It extends far into the suburbs and includes weekends, holidays and special events. Mobility problems have lessened in the last couple of years, but there is no reason to expect them to continue declining, based on almost three decades of data. See data for your city at mobility.tamu.edu/ums/congestion\_data.

**Congestion costs are increasing.** The congestion "invoice" for the cost of extra time and fuel in 439 urban areas was (all values in constant 2009 dollars):

- In 2009 \$115 billion
- In 2000 \$85 billion
- In 1982 \$24 billion

## Congestion wastes a massive amount of time, fuel and money. In 2009:

- 3.9 billion gallons of wasted fuel (equivalent to 130 days of flow in the Alaska Pipeline).
- 4.8 billion hours of extra time (equivalent to the time Americans spend relaxing and thinking in 10 weeks).
- \$115 billion of delay and fuel cost (the negative effect of uncertain or longer delivery times, missed meetings, business relocations and other congestion-related effects are not included).
- \$33 billion of the delay cost was the effect of congestion on truck operations; this does not include any value for the goods being transported in the trucks.
- The cost to the average commuter was \$808 in 2009 compared to an inflation-adjusted \$351 in 1982.

## Congestion affects people who make trips during the peak period.

- Yearly peak period delay for the average commuter was 34 hours in 2009, up from 14 hours in 1982.
- Those commuters wasted 28 gallons of fuel in the peak periods in 2009 2 weeks worth of fuel for the average U.S. driver up from 12 gallons in 1982.
- Congestion effects were even larger in areas with over one million persons 43 hours and 35 gallons in 2009.
- "Rush hour" possibly the most misnamed period ever lasted 6 hours in 2009.
- Fridays are the worst days to travel. The combination of work, school, leisure and other trips mean that urban residents earn their weekend after suffering one-fifth of weekly delay.
- 61 million Americans suffered more than 30 hours of delay in 2009.

## Congestion is also a problem at other hours.

- Approximately half of total delay occurs in the midday and overnight (outside of the peak hours of 6 to 10 a.m. and 3 to 7 p.m.) times of day when travelers and shippers expect free-flow travel.
- Midday congestion is not as severe, but can cause problems, especially for time sensitive meetings or freight delivery shipments. Freight movement has attempted to move away from the peak periods to avoid congestion when possible. But this accommodation has limits as congestion extends into the midday and overnight periods; manufacturing processes and human resources are difficult to significantly reschedule.

## **More Detail About Congestion Problems**

Congestion, by every measure, has increased substantially over the 28 years covered in this report. The most recent four years of the report, however, have seen a decline in congestion in most urban regions. This is consistent with the pattern seen in some metropolitan regions in the 1980s and 1990s; economic recessions cause fewer goods to be purchased, job losses mean fewer people on the road in rush hours and tight family budgets mean different travel decisions are made. Delay per auto commuter – the number of hours of extra travel time – was 5 hours lower in 2009 than 2006. This change would be more hopeful if it was more widely associated with something other than rising fuel prices and a slowing economy.

The decline means the total congestion problem is near the levels recorded in 2004. This "reset" in the congestion trend, and the low prices for construction, should be used as a time to promote congestion reduction programs, policies and projects. If the history associated with every other recovery is followed in this case, congestion problems will return when the economy begins to grow.

**Congestion is worse in areas of every size – it is not just a big city problem.** The growing delays also hit residents of smaller cities (Exhibit 3). Regions of all sizes have problems implementing enough projects, programs and policies to meet the demand of growing population and jobs. Major projects, programs and funding efforts take 10 to 15 years to develop.

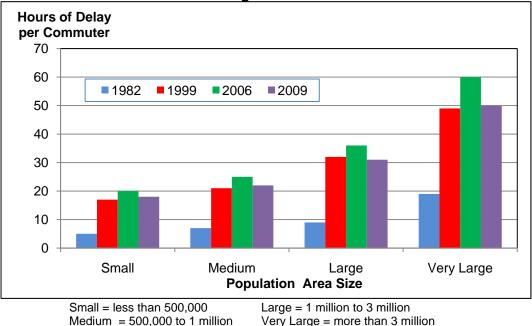



Exhibit 3. Congestion Growth Trend

Think of what else could be done with the 34 hours of extra time suffered by the average urban auto commuter in 2009:

- 4 vacation days
- Almost 500 shopping trips on Amazon.com (3)
- Watch all the interesting parts of every reality show on television with enough time left over to take 100 power naps.

Congestion builds through the week from Monday to Friday. Weekends have less delay than any weekday (Exhibit 4). Congestion is worse in the evening but it can be a problem all day (Exhibit 5). Midday hours comprise a significant share of the congestion problem.

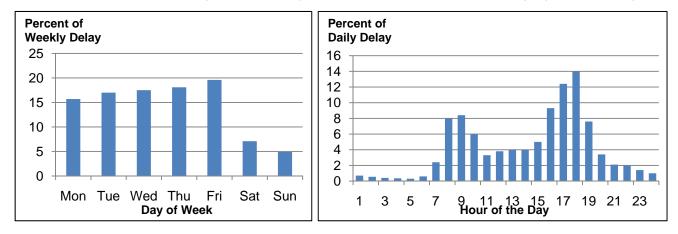
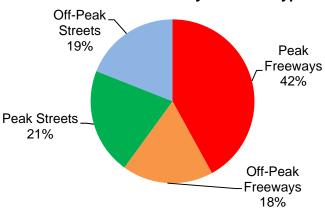



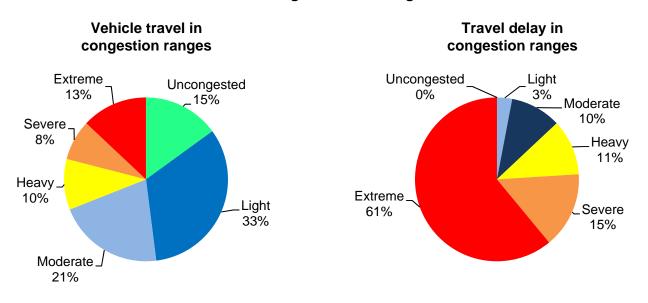

Exhibit 5. Percent of Delay by Time of Day

Exhibit 4. Percent of Delay for Each Day

Freeways have more delay than streets, but not as much as you might think (Exhibit 6).

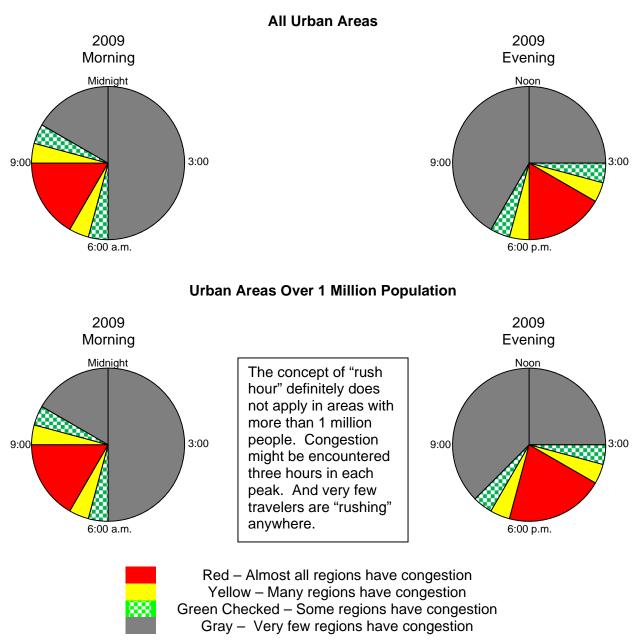


## Exhibit 6. Percent of Delay for Road Types


## The "surprising" congestion levels have logical explanations in some regions.

The urban area congestion level rankings shown in Tables 1 through 9 may surprise some readers. The areas listed below are examples of the reasons for higher than expected congestion levels.

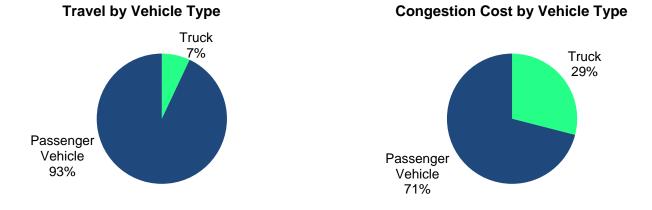
- *Work zones* Baton Rouge, Las Vegas. Construction, even when it occurs in the off-peak, can increase traffic congestion.
- Smaller urban areas with a major interstate highway Austin, Bridgeport, Colorado Springs, Salem. High volume highways running through smaller urban areas generate more traffic congestion than the local economy causes by itself.
- *Tourism* Orlando, Las Vegas. The traffic congestion measures in these areas are divided by the local population numbers causing the per-commuter values to be higher than normal.
- Geographic constraints Honolulu, Pittsburgh, Seattle. Water features, hills and other geographic elements cause more traffic congestion than regions with several alternative routes.


## Travelers and shippers must plan around congestion more often.

- In all 439 urban areas, the worst congestion levels affected only 1 in 9 trips in 1982, but almost 1 in 4 trips in 2009 (Exhibit 7).
- The most congested sections of road account for 76% of peak period delays, with only 21% of the travel (Exhibit 7).
- Delay has grown about five times larger overall since 1982.



#### Exhibit 7. Peak Period Congestion and Congested Travel in 2009


The Jam Clock (Exhibit 8) depicts the times of day when travelers are most likely to hit congestion.



#### Exhibit 8. The Jam Clock Shows That Congestion is Widespread for Several Hours of the Day

Note: The 2010 Urban Mobility Report examined all 24 hours of each day of the week with the INRIX National Average Speed dataset. Shading indicates regional congestion problems; some roads in regions may have congestion during the "gray" periods.

While trucks only account for 7 percent of the miles traveled in urban areas, they are almost 30 percent of the urban "congestion invoice." In addition, the cost in Exhibit 9 only includes the cost to operate the truck in heavy traffic; the extra cost of the commodities is not included.



#### Exhibit 9. 2009 Congestion Cost for Passenger and Freight Vehicles

## **Congestion Solutions – An Overview of the Portfolio**

We recommend a **balanced and diversified approach** to reduce congestion – one that focuses on more of everything. It is clear that our current investment levels have not kept pace with the problems. Population growth will require more systems, better operations and an increased number of travel alternatives. And most urban regions have big problems now – more congestion, poorer pavement and bridge conditions and less public transportation service than they would like. There will be a different mix of solutions in metro regions, cities, neighborhoods, job centers and shopping areas. Some areas might be more amenable to construction solutions, other areas might use more travel options, productivity improvements, diversified land use patterns or redevelopment solutions. In all cases, the solutions need to work together to provide an interconnected network of transportation services.

More information on the possible solutions, places they have been implemented, the effects estimated in this report and the methodology used to capture those benefits can be found on the website <u>http://mobility.tamu.edu/solutions</u>.

- Get as much service as possible from what we have Many low-cost improvements have broad public support and can be rapidly deployed. These management programs require innovation, constant attention and adjustment, but they pay dividends in faster, safer and more reliable travel. Rapidly removing crashed vehicles, timing the traffic signals so that more vehicles see green lights, improving road and intersection designs, or adding a short section of roadway are relatively simple actions.
- Add capacity in critical corridors Handling greater freight or person travel on freeways, streets, rail lines, buses or intermodal facilities often requires "more." Important corridors or growth regions can benefit from more road lanes, new streets and highways, new or expanded public transportation facilities, and larger bus and rail fleets.
- Change the usage patterns There are solutions that involve changes in the way employers and travelers conduct business to avoid traveling in the traditional "rush hours." Flexible work hours, internet connections or phones allow employees to choose work schedules that meet family needs and the needs of their jobs.
- Provide choices This might involve different routes, travel modes or lanes that involve a
  toll for high-speed and reliable service—a greater number of options that allow travelers and
  shippers to customize their travel plans.
- **Diversify the development patterns** These typically involve denser developments with a mix of jobs, shops and homes, so that more people can walk, bike or take transit to more, and closer, destinations. Sustaining the "quality of life" and gaining economic development without the typical increment of mobility decline in each of these sub-regions appear to be part, but not all, of the solution.
- **Realistic expectations** are also part of the solution. Large urban areas will be congested. Some locations near key activity centers in smaller urban areas will also be congested. But congestion does not have to be an all-day event. Identifying solutions and funding sources that meet a variety of community goals is challenging enough without attempting to eliminate congestion in all locations at all times.

# **Congestion Solutions – The Effects**

The 2010 Urban Mobility Report database includes the effect of several widely implemented congestion solutions. These provide more efficient and reliable operation of roads and public transportation using a combination of information, technology, design changes, operating practices and construction programs.

## **Benefits of Public Transportation Service**

Regular-route public transportation service on buses and trains provides a significant amount of peak-period travel in the most congested corridors and urban areas in the U.S. If public transportation service had been discontinued and the riders traveled in private vehicles in 2009, the 439 urban areas would have suffered an additional 785 million hours of delay and consumed 640 million more gallons of fuel (Exhibit 10). The value of the additional travel delay and fuel that would have been consumed if there were no public transportation service would be an additional \$18.8 billion, a 16% increase over current congestion costs in the 439 urban areas.

There were approximately 55 billion passenger-miles of travel on public transportation systems in the 439 urban areas in 2009 (4). The benefits from public transportation vary by the amount of travel and the road congestion levels (Exhibit 10). More information on the effects for each urban area is included in Table 3.

|                                         | Average Annual                                                     | Delay Reduction Due to Public Transportation |                          |                               |  |  |  |
|-----------------------------------------|--------------------------------------------------------------------|----------------------------------------------|--------------------------|-------------------------------|--|--|--|
| Population Group and<br>Number of Areas | nd Passenger-Miles Hours of<br>of Travel (Million) Delay (Million) |                                              | Percent of<br>Base Delay | Dollars Saved<br>(\$ Million) |  |  |  |
| Very Large (15)                         | 41,761                                                             | 671                                          | 24                       | 16,060                        |  |  |  |
| Large (31)                              | 5,561                                                              | 68                                           | 7                        | 1,620                         |  |  |  |
| Medium (33)                             | 1,684                                                              | 12                                           | 4                        | 276                           |  |  |  |
| Small (22)                              | 421                                                                | 3                                            | 3                        | 69                            |  |  |  |
| Other (338)                             | 5,970                                                              | 30                                           | 5                        | 735                           |  |  |  |
| National Urban Total                    | 55,397                                                             | 784                                          | 16                       | \$18,760                      |  |  |  |

#### Exhibit 10. Delay Increase in 2009 if Public Transportation Service Were Eliminated – 439 Areas

Note: Additional fuel consumption – 640 million gallons (included in Dollars Saved calculation). Source: Reference (4) and Review by Texas Transportation Institute

#### **Better Traffic Flow**

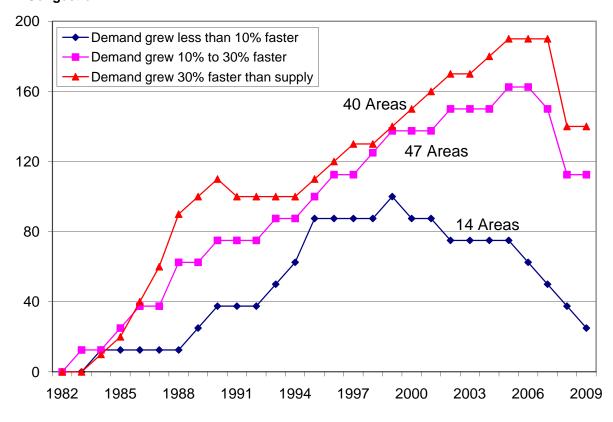
Improving transportation systems is about more than just adding road lanes, transit routes, sidewalks and bike lanes. It is also about operating those systems efficiently. Not only does congestion cause slow speeds, it also decreases the traffic volume that can use the roadway; stop-and-go roads only carry half to two-thirds of the vehicles as a smoothly flowing road. This is why simple volume-to-capacity measures are not good indicators; actual traffic volumes are low in stop-and-go conditions, so a volume/capacity measure says there is no congestion problem. Several types of improvements have been widely deployed to improve traffic flow on existing roadways.

Five prominent types of operational treatments are estimated to relieve a total of 321 million hours of delay (6.7% of the total) with a value of \$7.6 billion in 2009 (Exhibit 11). If the treatments were deployed on all major freeways and streets, the benefit would expand to almost 700 million hours of delay (14% of delay) and more than \$16 billion would be saved. These are significant benefits, especially since these techniques can be enacted more quickly than significant roadway or public transportation system expansions can occur. The operational treatments, however, are not large enough to replace the need for those expansions.

| Population Group and | -                        | Delay Reduction from Current<br>Projects |                          |  |  |  |  |
|----------------------|--------------------------|------------------------------------------|--------------------------|--|--|--|--|
| Number of Areas      | Hours Saved<br>(Million) | Dollars Saved<br>(\$ Million)            | Roads<br>(Million Hours) |  |  |  |  |
| Very Large (15)      | 231                      | 5,461                                    | 570                      |  |  |  |  |
| Large (31)           | 59                       | 1,383                                    | 80                       |  |  |  |  |
| Medium (33)          | 12                       | 297                                      | 30                       |  |  |  |  |
| Small (22)           | 3                        | 79                                       | 7                        |  |  |  |  |
| Other (338)          | 16                       | 395                                      | 35                       |  |  |  |  |
| TOTAL                | 321                      | \$7,615                                  | 722                      |  |  |  |  |

Note: This analysis uses nationally consistent data and relatively simple estimation procedures. Local or more detailed evaluations should be used where available. These estimates should be considered preliminary pending more extensive review and revision of information obtained from source databases (2,5).

More information about the specific treatments and examples of regions and corridors where they have been implemented can be found at the website <a href="http://mobility.tamu.edu/resources/">http://mobility.tamu.edu/resources/</a>


#### **More Capacity**

Projects that provide more road lanes and more public transportation service are part of the congestion solution package in most growing urban regions. New streets and urban freeways will be needed to serve new developments, public transportation improvements are particularly important in congested corridors and to serve major activity centers, and toll highways and toll lanes are being used more frequently in urban corridors. Capacity expansions are also important additions for freeway-to-freeway interchanges and connections to ports, rail yards, intermodal terminals and other major activity centers for people and freight transportation.

Additional roadways reduce the rate of congestion increase. This is clear from comparisons between 1982 and 2009 (Exhibit 12). Urban areas where capacity increases matched the demand increase saw congestion grow much more slowly than regions where capacity lagged behind demand growth. It is also clear, however, that if only 14 areas were able to accomplish that rate, there must be a broader and larger set of solutions applied to the problem. Most of these 14 regions (listed in Table 9) were not in locations of high economic growth, suggesting their challenges were not as great as in regions with booming job markets.



# Percent Increase in Congestion



Source: Texas Transportation Institute analysis, see Table 9 and <u>http://mobility.tamu.edu/ums/report/methodology.stm</u>

# **Freight Congestion and Commodity Value**

Trucks carry goods to suppliers, manufacturers and markets. They travel long and short distances in peak periods, middle of the day and overnight. Many of the trips conflict with commute trips, but many are also to warehouses, ports, industrial plants and other locations that are not on traditional suburb to office routes. Trucks are a key element in the just-in-time (or lean) manufacturing process; these business models use efficient delivery timing of components to reduce the amount of inventory warehouse space. As a consequence, however, trucks become a mobile warehouse and if their arrival times are missed, production lines can be stopped, at a cost of many times the value of the truck delay times.

Congestion, then, affects truck productivity and delivery times and can also be caused by high volumes of trucks, just as with high car volumes. One difference between car and truck congestion costs is important; a significant share of the \$33 billion in truck congestion costs in 2009 was passed on to consumers in the form of higher prices. The congestion effects extend far beyond the region where the congestion occurs.

The 2010 Urban Mobility Report, with funding from the National Center for Freight and Infrastructure Research and Education (CFIRE) at the University of Wisconsin and data from USDOT's Freight Analysis Framework (6), developed an estimate of the value of commodities being shipped by truck to and through urban areas and in rural regions. The commodity values were matched with truck delay estimates to identify regions where high values of commodities move on congested roadway networks.

Table 5 points to a correlation between commodity value and truck delay—higher commodity values are associated with more people; more people are associated with more traffic congestion. Bigger cities consume more goods, which means a higher value of freight movement. While there are many cities with large differences in commodity and delay ranks, only 15 urban areas are ranked with commodity values much higher than their delay ranking.

The Table also illustrates the role of long corridors with important roles in freight movement. Some of the smaller urban areas along major interstate highways along the east and west coast and through the central and Midwestern U.S., for example, have commodity value ranks much higher than their delay ranking. High commodity values and lower delay might sound advantageous—lower congestion levels with higher commodity values means there is less chance of congestion getting in the way of freight movement. At the areawide level, this reading of the data would be correct, but in the real world the problem often exists at the road or even intersection level—and solutions should be deployed in the same variety of ways.

## **Possible Solutions**

Urban and rural corridors, ports, intermodal terminals, warehouse districts and manufacturing plants are all locations where truck congestion is a particular problem. Some of the solutions to these problems look like those deployed for person travel—new roads and rail lines, new lanes on existing roads, lanes dedicated to trucks, additional lanes and docking facilities at warehouses and distribution centers. New capacity to handle freight movement might be an even larger need in coming years than passenger travel capacity. Goods are delivered to retail and commercial stores by trucks that are affected by congestion. But "upstream" of the store shelves, many manufacturing operations use just-in-time processes that rely on the ability of trucks to maintain a reliable schedule. Traffic congestion at any time of day causes potentially

costly disruptions. The solutions might be implemented in a broad scale to address freight traffic growth or targeted to road sections that cause freight bottlenecks.

Other strategies may consist of regulatory changes, operating practices or changes in the operating hours of freight facilities, delivery schedules or manufacturing plants. Addressing customs, immigration and security issues will reduce congestion at border ports-of-entry. These technology, operating and policy changes can be accomplished with attention to the needs of all stakeholders and, like the operational strategies examined in Exhibit 11, can get as much from the current systems and investments as possible.

#### The Next Generation of Freight Measures

The dataset used for Table 5 provides origin and destination information, but not routing paths. The 2010 Urban Mobility Report developed an estimate of the value of commodities in each urban area, but better estimates of value will be possible when new freight models are examined. Those can be matched with the detailed speed data from INRIX to investigate individual congested freight corridors and their value to the economy.

## Methodology – The New World of Congestion Data

The base data for the 2010 Urban Mobility Report come from INRIX, the U.S. Department of Transportation and the states (1,2,4). Several analytical processes are used to develop the final measures, but the biggest improvement in the last two decades is provided by INRIX data. The speed data covering most major roads in U.S. urban regions eliminates the difficult process of estimating speeds.

The methodology is described in a series of technical reports (*7,8,9,10*) that are posted on the mobility report website: <u>http://mobility.tamu.edu/ums/report/methodology.stm</u>.

- The INRIX traffic speeds are collected from a variety of sources and compiled in their National Average Speed (NAS) database. Agreements with fleet operators who have location devices on their vehicles feed time and location data points to INRIX. Individuals who have downloaded the INRIX application to their smart phones also contribute time/location data. The proprietary process filters inappropriate data (e.g., pedestrians walking next to a street) and compiles a dataset of average speeds for each road segment. TTI was provided a dataset of hourly average speeds for each link of major roadway covered in the NAS database for 2007, 2008 and 2009 (400,000 centerline miles in 2009).
- Hourly travel volume statistics were developed with a set of procedures developed from computer models and studies of real-world travel time and volume data. The congestion methodology uses daily traffic volume converted to average hourly volumes using a set of estimation curves developed from a national traffic count dataset (11).
- The hourly INRIX speeds were matched to the hourly volume data for each road section on the FHWA maps.
- An estimation procedure was also developed for the INRIX data that was not matched with an FHWA road section. The INRIX sections were ranked according to congestion level (using the Travel Time Index); those sections were matched with a similar list of most to least congested sections according to volume per lane (as developed from the FHWA data) (2). Delay was calculated by combining the lists of volume and speed.
- The effect of operational treatments and public transportation services were estimated using methods similar to previous Urban Mobility Reports.

## **Future Changes**

There will be other changes in the report methodology over the next few years. There is more information available every year from freeways, streets and public transportation systems that provides more descriptive travel time and volume data. In addition to the travel speed information from INRIX, some advanced transit operating systems monitor passenger volume, travel time and schedule information. These data can be used to more accurately describe congestion problems on public transportation and roadway systems.

# **Concluding Thoughts**

Congestion has gotten worse in many ways since 1982:

- Trips take longer.
- Congestion affects more of the day.
- Congestion affects weekend travel and rural areas.
- Congestion affects more personal trips and freight shipments.
- Trip travel times are unreliable.

The 2010 Urban Mobility Report points to a \$115 billion congestion cost, \$33 billion of which is due to truck congestion—and that is only the value of wasted time, fuel and truck operating costs. Congestion causes the average urban resident to spend an extra 34 hours of travel time and use 28 gallons of fuel, which amounts to an average cost of \$808 per commuter. The report includes a comprehensive picture of congestion in all 439 U.S. urban areas and provides an indication of how the problem affects travel choices, arrival times, shipment routes, manufacturing processes and location decisions.

The economic slowdown points to one of the basic rules of traffic congestion—if fewer people are traveling, there will be less congestion. Not exactly rocket surgery-type findings. Before everyone gets too excited about the decline in congestion, consider these points:

- The decline in driving after more than a doubling in the price of fuel was the equivalent of about 1 mile per day for the person traveling the average 12,000 annual miles.
- Previous recessions in the 1980s and 1990s saw congestion declines that were reversed as soon as the economy began to grow again. And we think 2008 was the best year for mobility in the last several; congestion worsened in 2009.

Anyone who thinks the congestion problem has gone away should check the past.

#### **Solutions and Performance Measurement**

There are solutions that work. There are significant benefits from aggressively attacking congestion problems—whether they are large or small, in big metropolitan regions or smaller urban areas and no matter the cause. Performance measures and detailed data like those used in the *2010 Urban Mobility Report* can guide those investments, identify operating changes that should be made and provide the public with the assurance that their dollars are being spent wisely. Decision-makers and project planners alike should use the comprehensive congestion data to describe the problems and solutions in ways that resonate with traveler experiences and frustrations.

All of the potential congestion-reducing strategies are needed. Getting more productivity out of the existing road and public transportation systems is vital to reducing congestion and improving travel time reliability. Businesses and employees can use a variety of strategies to modify their times and modes of travel to avoid the peak periods or to use less vehicle travel and more electronic "travel." In many corridors, however, there is a need for additional capacity to move people and freight more rapidly and reliably.

The good news from the 2010 Urban Mobility Report is that the data can improve decisions and the methods used to communicate the effects of actions. The information can be used to study congestion problems in detail and decide how to fund and implement projects, programs and policies to attack the problems. And because the data relate to everyone's travel experiences, the measures are relatively easy to understand and use to develop solutions that satisfy the transportation needs of a range of travelers, freight shippers, manufacturers and others.

## **National Congestion Tables**

|                                     | Table 1. Wh                       | Table 1. What Congestion Means to You, 2009 |                   |      |                                  |      |                                      |      |  |  |  |  |
|-------------------------------------|-----------------------------------|---------------------------------------------|-------------------|------|----------------------------------|------|--------------------------------------|------|--|--|--|--|
| Urban Area                          | Yearly Delay per Auto<br>Commuter |                                             | Travel Time Index |      | Excess Fuel per Auto<br>Commuter |      | Congestion Cost per<br>Auto Commuter |      |  |  |  |  |
|                                     | Hours                             | Rank                                        | Value             | Rank | Gallons                          | Rank | Dollars                              | Rank |  |  |  |  |
| Very Large Average (15 areas)       | 50                                |                                             | 1.26              |      | 39                               |      | 1,166                                |      |  |  |  |  |
| Chicago IL-IN                       | 70                                | 1                                           | 1.25              | 7    | 52                               | 2    | 1,738                                | 1    |  |  |  |  |
| Washington DC-VA-MD                 | 70                                | 1                                           | 1.30              | 2    | 57                               | 1    | 1,555                                | 2    |  |  |  |  |
| Los Angeles-Long Beach-Santa Ana CA | 63                                | 3                                           | 1.38              | 1    | 50                               | 4    | 1,464                                | 3    |  |  |  |  |
| Houston TX                          | 58                                | 4                                           | 1.25              | 7    | 52                               | 2    | 1,322                                | 4    |  |  |  |  |
| San Francisco-Oakland CA            | 49                                | 6                                           | 1.27              | 4    | 39                               | 6    | 1,112                                | 6    |  |  |  |  |
| Dallas-Fort Worth-Arlington TX      | 48                                | 7                                           | 1.22              | 16   | 38                               | 7    | 1,077                                | 8    |  |  |  |  |
| Boston MA-NH-RI                     | 48                                | 7                                           | 1.20              | 20   | 36                               | 10   | 1,112                                | 6    |  |  |  |  |
| Atlanta GA                          | 44                                | 10                                          | 1.22              | 16   | 35                               | 11   | 1,046                                | 11   |  |  |  |  |
| Seattle WA                          | 44                                | 10                                          | 1.24              | 11   | 35                               | 11   | 1,056                                | 10   |  |  |  |  |
| New York-Newark NY-NJ-CT            | 42                                | 13                                          | 1.27              | 4    | 32                               | 14   | 999                                  | 13   |  |  |  |  |
| Miami FL                            | 39                                | 15                                          | 1.23              | 13   | 31                               | 18   | 892                                  | 18   |  |  |  |  |
| Philadelphia PA-NJ-DE-MD            | 39                                | 15                                          | 1.19              | 23   | 30                               | 21   | 919                                  | 17   |  |  |  |  |
| San Diego CA                        | 37                                | 18                                          | 1.18              | 25   | 31                               | 18   | 848                                  | 20   |  |  |  |  |
| Phoenix AZ                          | 36                                | 20                                          | 1.20              | 20   | 31                               | 18   | 972                                  | 14   |  |  |  |  |
| Detroit MI                          | 33                                | 26                                          | 1.15              | 36   | 24                               | 36   | 761                                  | 30   |  |  |  |  |

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population.

Yearly Delay per Auto Commuter—Extra travel time during the year divided by the number of people who commute in private vehicles in the urban area. Travel Time Index—The ratio of travel time in the peak period to the travel time at free-flow conditions. A value of 1.30 indicates a 20-minute free-flow trip takes 26 minutes in the peak period.

Excess Fuel Consumed—Increased fuel consumption due to travel in congested conditions rather than free-flow conditions.

Congestion Cost—Value of travel time delay (estimated at \$16 per hour of person travel and \$106 per hour of truck time) and excess fuel consumption (estimated using state average cost per gallon).

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

|                             |                        |      | eans to You, | 2009, CON |                 |      | Concretio          | Costman |
|-----------------------------|------------------------|------|--------------|-----------|-----------------|------|--------------------|---------|
| Link on Anon                | Yearly Dela            |      | Travel Tim   |           | Excess Fue      |      | Congestion         |         |
| Urban Area                  | Commuter<br>Hours Rank |      |              |           | Comn<br>Gallons |      | Auto Co<br>Dollars |         |
|                             |                        | Rank | Value        | Rank      |                 | Rank |                    | Rank    |
| Large Average (31 areas)    | 31                     | _    | 1.17         |           | 26              | _    | 726                | _       |
| Baltimore MD                | 50                     | 5    | 1.17         | 29        | 43              | 5    | 1,218              | 5       |
| Denver-Aurora CO            | 47                     | 9    | 1.22         | 16        | 38              | 7    | 1,057              | 9       |
| Minneapolis-St. Paul MN     | 43                     | 12   | 1.21         | 19        | 37              | 9    | 970                | 15      |
| Orlando FL                  | 41                     | 14   | 1.20         | 20        | 32              | 14   | 963                | 16      |
| Austin TX                   | 39                     | 15   | 1.28         | 3         | 32              | 14   | 882                | 19      |
| Portland OR-WA              | 36                     | 20   | 1.23         | 13        | 30              | 21   | 830                | 23      |
| San Jose CA                 | 35                     | 22   | 1.23         | 13        | 30              | 21   | 774                | 26      |
| Nashville-Davidson TN       | 35                     | 22   | 1.15         | 36        | 28              | 25   | 831                | 22      |
| Tampa-St. Petersburg FL     | 34                     | 25   | 1.16         | 32        | 27              | 27   | 764                | 29      |
| Pittsburgh PA               | 33                     | 26   | 1.17         | 29        | 27              | 27   | 778                | 25      |
| San Juan PR                 | 33                     | 26   | 1.25         | 7         | 33              | 13   | 787                | 24      |
| Virginia Beach VA           | 32                     | 29   | 1.19         | 23        | 25              | 33   | 695                | 34      |
| Las Vegas NV                | 32                     | 29   | 1.26         | 6         | 26              | 30   | 708                | 33      |
| St. Louis MO-IL             | 31                     | 31   | 1.12         | 50        | 27              | 27   | 772                | 27      |
| New Orleans LA              | 31                     | 31   | 1.15         | 36        | 23              | 39   | 772                | 27      |
| Riverside-San Bernardino CA | 30                     | 35   | 1.16         | 32        | 25              | 33   | 741                | 31      |
| San Antonio TX              | 30                     | 35   | 1.16         | 32        | 28              | 25   | 663                | 38      |
| Charlotte NC-SC             | 26                     | 41   | 1.17         | 29        | 22              | 41   | 651                | 40      |
| Jacksonville FL             | 26                     | 41   | 1.12         | 50        | 22              | 41   | 601                | 47      |
| Indianapolis IN             | 25                     | 44   | 1.18         | 25        | 19              | 56   | 615                | 45      |
| Raleigh-Durham NC           | 25                     | 44   | 1.13         | 44        | 22              | 41   | 620                | 44      |
| Milwaukee WI                | 25                     | 44   | 1.16         | 32        | 21              | 45   | 588                | 48      |
| Memphis TN-MS-AR            | 24                     | 49   | 1.13         | 44        | 21              | 45   | 571                | 51      |
| Sacramento CA               | 24                     | 49   | 1.18         | 25        | 21              | 45   | 550                | 54      |
| Louisville KY-IN            | 22                     | 56   | 1.10         | 61        | 19              | 56   | 521                | 57      |
| Kansas City MO-KS           | 21                     | 58   | 1.10         | 61        | 20              | 53   | 498                | 61      |
| Cincinnati OH-KY-IN         | 19                     | 66   | 1.12         | 50        | 15              | 74   | 451                | 63      |
| Cleveland OH                | 19                     | 66   | 1.10         | 61        | 16              | 68   | 423                | 71      |
| Providence RI-MA            | 19                     | 66   | 1.14         | 42        | 15              | 74   | 406                | 77      |
| Buffalo NY                  | 17                     | 78   | 1.10         | 61        | 16              | 68   | 417                | 72      |
| Columbus OH                 | 17                     | 78   | 1.11         | 58        | 15              | 74   | 388                | 79      |

#### Table 1. What Congestion Means to You, 2009, Continued

Very Large Urban Areas—over 3 million population. Large Urban Areas—over 1 million and less than 3 million population. Medium Urban Areas—over 500,000 and less than 1 million population. Small Urban Areas—less than 500,000 population.

Small Urban Areas—less than 5

Yearly Delay per Auto Commuter—Extra travel time during the year divided by the number of people who commute in private vehicles in the urban area.

Travel Time Index—The ratio of travel time in the peak period to the travel time at free-flow conditions. A value of 1.30 indicates a 20-minute free-flow trip takes 26 minutes in the peak period.

Excess Fuel Consumed—Increased fuel consumption due to travel in congested conditions rather than free-flow conditions.

Congestion Cost—Value of travel time delay (estimated at \$16 per hour of person travel and \$106 per hour of truck time) and excess fuel consumption (estimated using state average cost per gallon).

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined. Also note: The best congestion comparisons use multi-year trends and are made between similar urban areas.

| Urban Area                           |       | ay per Auto<br>muter | Travel Tim | ne Index | Excess Fue<br>Comn |      | Congestion Cost per<br>Auto Commuter |      |
|--------------------------------------|-------|----------------------|------------|----------|--------------------|------|--------------------------------------|------|
|                                      | Hours | Rank                 | Value      | Rank     | Gallons            | Rank | Dollars                              | Rank |
| Medium Average (33 areas)            | 22    |                      | 1.11       |          | 18                 |      | 508                                  |      |
| Baton Rouge LA                       | 37    | 18                   | 1.24       | 11       | 30                 | 21   | 1,030                                | 12   |
| Bridgeport-Stamford CT-NY            | 35    | 22                   | 1.25       | 7        | 32                 | 14   | 847                                  | 21   |
| Colorado Springs CO                  | 31    | 31                   | 1.12       | 50       | 25                 | 33   | 684                                  | 35   |
| Honolulu HI                          | 31    | 31                   | 1.18       | 25       | 26                 | 30   | 709                                  | 32   |
| New Haven CT                         | 29    | 37                   | 1.15       | 36       | 26                 | 30   | 678                                  | 36   |
| Birmingham AL                        | 28    | 38                   | 1.14       | 42       | 23                 | 39   | 662                                  | 39   |
| Salt Lake City UT                    | 28    | 38                   | 1.12       | 50       | 22                 | 41   | 607                                  | 46   |
| Charleston-North Charleston SC       | 27    | 40                   | 1.15       | 36       | 24                 | 36   | 646                                  | 41   |
| Albuquerque NM                       | 26    | 41                   | 1.13       | 44       | 21                 | 45   | 677                                  | 37   |
| Oklahoma City OK                     | 25    | 44                   | 1.09       | 70       | 21                 | 45   | 575                                  | 50   |
| Hartford CT                          | 24    | 49                   | 1.13       | 44       | 21                 | 45   | 541                                  | 55   |
| Tucson AZ                            | 23    | 54                   | 1.11       | 58       | 18                 | 63   | 628                                  | 42   |
| Allentown-Bethlehem PA-NJ            | 22    | 56                   | 1.08       | 74       | 19                 | 56   | 522                                  | 56   |
| El Paso TX-NM                        | 21    | 58                   | 1.15       | 36       | 19                 | 56   | 501                                  | 59   |
| Omaha NE-IA                          | 20    | 63                   | 1.08       | 74       | 16                 | 68   | 413                                  | 74   |
| Wichita KS                           | 20    | 63                   | 1.08       | 74       | 21                 | 45   | 451                                  | 63   |
| Richmond VA                          | 19    | 66                   | 1.06       | 88       | 16                 | 68   | 411                                  | 75   |
| Grand Rapids MI                      | 19    | 66                   | 1.06       | 88       | 18                 | 63   | 440                                  | 68   |
| Oxnard-Ventura CA                    | 19    | 66                   | 1.12       | 50       | 19                 | 56   | 443                                  | 67   |
| Springfield MA-CT                    | 19    | 66                   | 1.09       | 70       | 14                 | 78   | 417                                  | 72   |
| Albany-Schenectady NY                | 18    | 75                   | 1.10       | 61       | 15                 | 74   | 446                                  | 66   |
| Lancaster-Palmdale CA                | 18    | 75                   | 1.11       | 58       | 13                 | 82   | 382                                  | 81   |
| Tulsa OK                             | 18    | 75                   | 1.07       | 79       | 17                 | 67   | 407                                  | 76   |
| Sarasota-Bradenton FL                | 17    | 78                   | 1.10       | 61       | 14                 | 78   | 391                                  | 78   |
| Akron OH                             | 16    | 81                   | 1.05       | 95       | 12                 | 86   | 349                                  | 85   |
| Dayton OH                            | 15    | 84                   | 1.06       | 88       | 12                 | 86   | 331                                  | 88   |
| Fresno CA                            | 14    | 87                   | 1.07       | 79       | 13                 | 82   | 345                                  | 86   |
| Indio-Cathedral City-Palm Springs CA | 14    | 87                   | 1.13       | 44       | 11                 | 92   | 337                                  | 87   |
| Toledo OH-MI                         | 12    | 92                   | 1.05       | 95       | 9                  | 98   | 276                                  | 95   |
| Rochester NY                         | 12    | 92                   | 1.07       | 79       | 11                 | 92   | 273                                  | 96   |
| Bakersfield CA                       | 11    | 95                   | 1.08       | 74       | 11                 | 92   | 310                                  | 92   |
| Poughkeepsie-Newburgh NY             | 11    | 95                   | 1.04       | 99       | 10                 | 97   | 261                                  | 97   |
| McAllen TX                           | 7     | 101                  | 1.09       | 70       | 6                  | 101  | 147                                  | 101  |

Table 1. What Congestion Means to You, 2009, Continued

Very Large Urban Areas—over 3 million population. Large Urban Areas—over 1 million and less than 3 million population. Medium Urban Areas—over 500,000 and less than 1 million population.

Small Urban Areas—less than 500,000 population.

Yearly Delay per Auto Commuter—Extra travel time during the year divided by the number of people who commute in private vehicles in the urban area.

Travel Time Index-The ratio of travel time in the peak period to the travel time at free-flow conditions. A value of 1.30 indicates a 20-minute free-flow trip takes 26 minutes in the peak period.

Excess Fuel Consumed—Increased fuel consumption due to travel in congested conditions rather than free-flow conditions.

Congestion Cost—Value of travel time delay (estimated at \$16 per hour of person travel and \$106 per hour of truck time) and excess fuel consumption (estimated using state average cost per gallon).

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

| Urban Area               | -     | ay per Auto<br>muter | Travel Time Index |      | Excess Fuel per Auto<br>Commuter |      | Congestion Cost per<br>Auto Commuter |      |
|--------------------------|-------|----------------------|-------------------|------|----------------------------------|------|--------------------------------------|------|
|                          | Hours | Rank                 | Value             | Rank | Gallons                          | Rank | Dollars                              | Rank |
| Small Average (22 areas) | 18    |                      | 1.08              |      | 16                               |      | 436                                  |      |
| Columbia SC              | 25    | 44                   | 1.09              | 70   | 20                               | 53   | 622                                  | 43   |
| Salem OR                 | 24    | 49                   | 1.10              | 61   | 20                               | 53   | 567                                  | 52   |
| Little Rock AR           | 24    | 49                   | 1.10              | 61   | 24                               | 36   | 581                                  | 49   |
| Cape Coral FL            | 23    | 54                   | 1.12              | 50   | 19                               | 56   | 558                                  | 53   |
| Beaumont TX              | 21    | 58                   | 1.08              | 74   | 21                               | 45   | 501                                  | 59   |
| Knoxville TN             | 21    | 58                   | 1.06              | 88   | 18                               | 63   | 486                                  | 62   |
| Boise ID                 | 21    | 58                   | 1.12              | 50   | 18                               | 63   | 449                                  | 65   |
| Worcester MA             | 20    | 63                   | 1.07              | 79   | 16                               | 68   | 429                                  | 69   |
| Jackson MS               | 19    | 66                   | 1.07              | 79   | 19                               | 56   | 515                                  | 58   |
| Pensacola FL-AL          | 19    | 66                   | 1.07              | 79   | 16                               | 68   | 427                                  | 70   |
| Spokane WA               | 16    | 81                   | 1.10              | 61   | 11                               | 92   | 385                                  | 80   |
| Winston-Salem NC         | 16    | 81                   | 1.06              | 88   | 14                               | 78   | 380                                  | 82   |
| Boulder CO               | 15    | 84                   | 1.13              | 44   | 12                               | 86   | 320                                  | 90   |
| Greensboro NC            | 15    | 84                   | 1.05              | 95   | 13                               | 82   | 377                                  | 83   |
| Anchorage AK             | 14    | 87                   | 1.05              | 95   | 12                               | 86   | 329                                  | 89   |
| Brownsville TX           | 14    | 87                   | 1.04              | 99   | 12                               | 86   | 350                                  | 84   |
| Provo UT                 | 14    | 87                   | 1.06              | 88   | 12                               | 86   | 306                                  | 93   |
| Laredo TX                | 12    | 92                   | 1.07              | 79   | 14                               | 78   | 318                                  | 91   |
| Madison WI               | 11    | 95                   | 1.06              | 88   | 11                               | 92   | 287                                  | 94   |
| Corpus Christi TX        | 10    | 98                   | 1.07              | 79   | 13                               | 82   | 245                                  | 98   |
| Stockton CA              | 9     | 99                   | 1.02              | 101  | 9                                | 98   | 240                                  | 99   |
| Eugene OR                | 9     | 99                   | 1.07              | 79   | 8                                | 100  | 216                                  | 100  |
| 101 Area Average         | 39    |                      | 1.20              |      | 32                               |      | 911                                  |      |
| Remaining Areas          | 18    |                      | 1.09              |      | 16                               |      | 445                                  |      |
| All 439 Urban Areas      | 34    |                      | 1.20              |      | 28                               |      | 808                                  |      |

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population.

Yearly Delay per Auto Commuter—Extra travel time during the year divided by the number of people who commute in private vehicles in the urban area. Travel Time Index—The ratio of travel time in the peak period to the travel time at free-flow conditions. A value of 1.30 indicates a 20-minute free-flow trip takes 26 minutes in the peak period.

Excess Fuel Consumed—Increased fuel consumption due to travel in congested conditions rather than free-flow conditions.

Congestion Cost—Value of travel time delay (estimated at \$16 per hour of person travel and \$106 per hour of truck time) and excess fuel consumption (estimated using state average cost per gallon).

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

|                                     |              |              |                |                      | Truck Cong   | estion | Total Cong   | estion |  |
|-------------------------------------|--------------|--------------|----------------|----------------------|--------------|--------|--------------|--------|--|
| Urban Area                          | Travel Del   | Travel Delay |                | Excess Fuel Consumed |              | Cost   |              | Cost   |  |
|                                     | (1000 Hours) | Rank         | (1000 Gallons) | Rank                 | (\$ million) | Rank   | (\$ million) | Rank   |  |
| Very Large Average (15 areas)       | 185,503      |              | 145,959        |                      | 1,273        |        | 4,414        |        |  |
| Los Angeles-Long Beach-Santa Ana CA | 514,955      | 1            | 406,587        | 1                    | 3,200        | 2      | 11,997       | 1      |  |
| New York-Newark NY-NJ-CT            | 454,443      | 2            | 348,326        | 2                    | 3,133        | 3      | 10,878       | 2      |  |
| Chicago IL-IN                       | 372,755      | 3            | 276,883        | 3                    | 3,349        | 1      | 9,476        | 3      |  |
| Washington DC-VA-MD                 | 180,976      | 4            | 148,212        | 4                    | 945          | 6      | 4,066        | 4      |  |
| Dallas-Fort Worth-Arlington TX      | 159,654      | 5            | 126,112        | 6                    | 948          | 5      | 3,649        | 5      |  |
| Houston TX                          | 144,302      | 6            | 129,627        | 5                    | 940          | 7      | 3,403        | 6      |  |
| Philadelphia PA-NJ-DE-MD            | 136,429      | 8            | 106,000        | 8                    | 967          | 4      | 3,274        | 7      |  |
| Miami FL                            | 140,972      | 7            | 109,281        | 7                    | 883          | 8      | 3,272        | 8      |  |
| San Francisco-Oakland CA            | 121,117      | 9            | 94,924         | 9                    | 718          | 11     | 2,791        | 9      |  |
| Atlanta GA                          | 112,262      | 11           | 90,645         | 10                   | 852          | 9      | 2,727        | 10     |  |
| Boston MA-NH-RI                     | 118,707      | 10           | 89,928         | 11                   | 660          | 12     | 2,691        | 11     |  |
| Phoenix AZ                          | 80,390       | 15           | 69,214         | 13                   | 839          | 10     | 2,161        | 12     |  |
| Seattle WA                          | 86,549       | 13           | 68,703         | 14                   | 659          | 13     | 2,119        | 13     |  |
| Detroit MI                          | 87,996       | 12           | 64,892         | 15                   | 551          | 15     | 2,032        | 14     |  |
| San Diego CA                        | 71,034       | 18           | 60,057         | 18                   | 450          | 16     | 1,672        | 18     |  |

Table 2 What Congestion Means to Your Town 2000

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population. Travel Delay—Value of extra travel time during the year (estimated at \$16 per hour of person travel).

Excess Fuel Consumed—Value of increased fuel consumption due to travel in congested conditions rather than free-flow conditions (estimated using state average cost per gallon).

Truck Congestion Cost—Value of increased travel time, fuel and other operating costs of large trucks (estimated at \$106 per hour of truck time).

Congestion Cost—Value of delay, fuel and truck congestion cost.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

|                             |              |      |                 |      | Truck Cong   |      | Total Cong   |      |
|-----------------------------|--------------|------|-----------------|------|--------------|------|--------------|------|
| Urban Area                  | Travel Del   |      | Excess Fuel Cor |      | Cost         |      | Cost         |      |
|                             | (1000 Hours) | Rank | (1000 Gallons)  | Rank | (\$ million) | Rank | (\$ million) | Rank |
| Large Average (31 areas)    | 32,953       |      | 27,926          |      | 216          |      | 780          |      |
| Baltimore MD                | 82,836       | 14   | 70,912          | 12   | 620          | 14   | 2,024        | 15   |
| Denver-Aurora CO            | 75,196       | 16   | 60,441          | 17   | 431          | 18   | 1,711        | 16   |
| Minneapolis-St. Paul MN     | 74,070       | 17   | 64,765          | 16   | 409          | 19   | 1,689        | 17   |
| Tampa-St. Petersburg FL     | 54,130       | 19   | 42,644          | 20   | 315          | 21   | 1,239        | 19   |
| St. Louis MO-IL             | 48,777       | 21   | 42,474          | 21   | 432          | 17   | 1,238        | 20   |
| San Juan PR                 | 49,526       | 20   | 49,808          | 19   | 252          | 25   | 1,190        | 21   |
| Riverside-San Bernardino CA | 39,008       | 26   | 33,110          | 25   | 317          | 20   | 976          | 22   |
| Pittsburgh PA               | 39,718       | 24   | 33,424          | 24   | 288          | 23   | 965          | 23   |
| Orlando FL                  | 39,185       | 25   | 31,189          | 26   | 306          | 22   | 962          | 24   |
| Portland OR-WA              | 40,554       | 23   | 33,938          | 23   | 265          | 24   | 958          | 25   |
| San Jose CA                 | 42,313       | 22   | 35,422          | 22   | 197          | 27   | 937          | 26   |
| Virginia Beach VA           | 33,469       | 27   | 26,612          | 28   | 135          | 42   | 714          | 27   |
| Austin TX                   | 30,272       | 28   | 25,631          | 29   | 174          | 30   | 691          | 28   |
| Las Vegas NV                | 30,077       | 29   | 25,157          | 30   | 153          | 37   | 673          | 29   |
| Sacramento CA               | 28,461       | 31   | 25,119          | 31   | 178          | 29   | 671          | 30   |
| San Antonio TX              | 29,446       | 30   | 27,249          | 27   | 153          | 37   | 664          | 31   |
| Nashville-Davidson TN       | 25,443       | 32   | 20,309          | 33   | 201          | 26   | 624          | 32   |
| Milwaukee WI                | 24,113       | 33   | 19,736          | 34   | 162          | 33   | 570          | 33   |
| Kansas City MO-KS           | 22,172       | 34   | 21,036          | 32   | 162          | 33   | 538          | 34   |
| Cincinnati OH-KY-IN         | 21,391       | 36   | 17,528          | 37   | 166          | 32   | 525          | 35   |
| New Orleans LA              | 19,867       | 39   | 14,772          | 43   | 188          | 28   | 511          | 36   |
| Indianapolis IN             | 20,164       | 38   | 15,642          | 40   | 169          | 31   | 503          | 38   |
| Cleveland OH                | 21,859       | 35   | 18,077          | 36   | 111          | 46   | 489          | 39   |
| Raleigh-Durham NC           | 18,541       | 41   | 16,126          | 38   | 162          | 33   | 472          | 40   |
| Jacksonville FL             | 18,481       | 42   | 16,029          | 39   | 130          | 44   | 445          | 41   |
| Charlotte NC-SC             | 17,207       | 44   | 14,296          | 44   | 151          | 39   | 437          | 42   |
| Memphis TN-MS-AR            | 17,639       | 43   | 15,483          | 41   | 133          | 43   | 430          | 43   |
| Louisville KY-IN            | 16,019       | 47   | 13,672          | 45   | 120          | 45   | 389          | 45   |
| Providence RI-MA            | 15,679       | 48   | 12,330          | 48   | 70           | 57   | 343          | 49   |
| Columbus OH                 | 14,282       | 50   | 12,054          | 49   | 77           | 51   | 323          | 51   |
| Buffalo NY                  | 11,660       | 56   | 10,716          | 55   | 76           | 52   | 280          | 56   |

#### Table 2. What Congestion Means to Your Town, 2009, Continued

Very Large Urban Areas—over 3 million population. Large Urban Areas—over 1 million and less than 3 million population. Medium Urban Areas—over 500,000 and less than 1 million population. Small Urban Areas—less than 500,000 population.

Travel Delay—Value of extra travel time during the year (estimated at \$16 per hour of person travel).

Excess Fuel Consumed—Value of increased fuel consumption due to travel in congested conditions rather than free-flow conditions (estimated using state average cost per gallon).

Truck Congestion Cost-Value of increased travel time, fuel and other operating costs of large trucks (estimated at \$106 per hour of truck time).

Congestion Cost-Value of delay, fuel and truck congestion cost.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined. Also note: The best congestion comparisons use multi-year trends and are made between similar urban areas.

|                                      |              |              |                |                      | Truck Cong   |      | Total Congestion |      |  |
|--------------------------------------|--------------|--------------|----------------|----------------------|--------------|------|------------------|------|--|
| Urban Area                           |              | Travel Delay |                | Excess Fuel Consumed |              | Cost |                  | Cost |  |
|                                      | (1000 Hours) | Rank         | (1000 Gallons) | Rank                 | (\$ million) | Rank | (\$ million)     | Rank |  |
| Medium Average (33 areas)            | 9,841        |              | 8,379          |                      | 64           |      | 233              |      |  |
| Bridgeport-Stamford CT-NY            | 20,972       | 37           | 18,730         | 35                   | 142          | 40   | 507              | 37   |  |
| Salt Lake City UT                    | 18,789       | 40           | 15,063         | 42                   | 91           | 50   | 415              | 44   |  |
| Baton Rouge LA                       | 14,017       | 52           | 11,523         | 52                   | 162          | 33   | 387              | 46   |  |
| Birmingham AL                        | 16,227       | 46           | 13,344         | 46                   | 105          | 48   | 380              | 47   |  |
| Oklahoma City OK                     | 16,335       | 45           | 13,269         | 47                   | 101          | 49   | 376              | 48   |  |
| Honolulu HI                          | 14,394       | 49           | 12,018         | 50                   | 60           | 61   | 326              | 50   |  |
| Hartford CT                          | 14,072       | 51           | 11,991         | 51                   | 74           | 54   | 321              | 52   |  |
| Tucson AZ                            | 11,282       | 57           | 8,724          | 59                   | 137          | 41   | 317              | 53   |  |
| Albuquerque NM                       | 10,798       | 58           | 8,563          | 60                   | 110          | 47   | 286              | 54   |  |
| New Haven CT                         | 11,956       | 55           | 10,716         | 54                   | 76           | 52   | 285              | 55   |  |
| Richmond VA                          | 12,895       | 53           | 11,188         | 53                   | 54           | 66   | 279              | 57   |  |
| Colorado Springs CO                  | 12,074       | 54           | 9,667          | 56                   | 58           | 62   | 266              | 58   |  |
| El Paso TX-NM                        | 10,020       | 59           | 8,725          | 58                   | 72           | 56   | 242              | 59   |  |
| Allentown-Bethlehem PA-NJ            | 9,998        | 60           | 8,438          | 61                   | 65           | 60   | 237              | 60   |  |
| Charleston-North Charleston SC       | 9,189        | 61           | 8,313          | 63                   | 73           | 55   | 227              | 61   |  |
| Oxnard-Ventura CA                    | 8,921        | 62           | 9,333          | 57                   | 58           | 62   | 216              | 62   |  |
| Tulsa OK                             | 8,621        | 64           | 8,434          | 62                   | 54           | 66   | 202              | 63   |  |
| Sarasota-Bradenton FL                | 8,563        | 65           | 6,953          | 68                   | 52           | 68   | 198              | 65   |  |
| Grand Rapids MI                      | 8,131        | 68           | 8,020          | 64                   | 52           | 68   | 193              | 66   |  |
| Albany-Schenectady NY                | 7,844        | 69           | 6,517          | 69                   | 55           | 65   | 190              | 67   |  |
| Omaha NE-IA                          | 8,737        | 63           | 7,223          | 67                   | 32           | 82   | 184              | 68   |  |
| Springfield MA-CT                    | 8,264        | 66           | 6,210          | 73                   | 40           | 76   | 183              | 69   |  |
| Dayton OH                            | 7,479        | 70           | 6,005          | 74                   | 42           | 75   | 170              | 72   |  |
| Fresno CA                            | 6,669        | 77           | 6,280          | 71                   | 50           | 71   | 165              | 74   |  |
| Lancaster-Palmdale CA                | 7,300        | 74           | 5,454          | 78                   | 35           | 78   | 161              | 75   |  |
| Wichita KS                           | 7,178        | 75           | 7,326          | 65                   | 33           | 79   | 160              | 77   |  |
| Akron OH                             | 6,713        | 76           | 5,063          | 79                   | 33           | 79   | 148              | 78   |  |
| Indio-Cathedral City-Palm Springs CA | 5,703        | 80           | 4,293          | 81                   | 44           | 74   | 140              | 79   |  |
| Rochester NY                         | 6,124        | 78           | 5,658          | 76                   | 31           | 84   | 140              | 79   |  |
| Bakersfield CA                       | 4,191        | 88           | 3,971          | 83                   | 50           | 71   | 119              | 82   |  |
| Poughkeepsie-Newburgh NY             | 4,373        | 85           | 4,147          | 82                   | 31           | 84   | 107              | 84   |  |
| Toledo OH-MI                         | 4,427        | 84           | 3,276          | 91                   | 28           | 88   | 102              | 86   |  |
| McAllen TX                           | 2,494        | 97           | 2,077          | 98                   | 14           | 99   | 56               | 97   |  |

#### Table 2. What Congestion Means to Your Town, 2009, Continued

Very Large Urban Areas—over 3 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Travel Delay-Value of extra travel time during the year (estimated at \$16 per hour of person travel).

Excess Fuel Consumed—Value of increased fuel consumption due to travel in congested conditions rather than free-flow conditions (estimated using state average cost per gallon). Truck Congestion Cost—Value of increased travel time, fuel and other operating costs of large trucks (estimated at \$106 per hour of truck time).

Congestion Cost-Value of delay, fuel and truck congestion cost.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

Medium Urban Areas—over 500,000 and less than 1 million population.

Small Urban Areas-less than 500,000 population.

|                          |              | Travel Delay |                | Excess Fuel Consumed |              | Truck Congestion<br>Cost |              | Total Congestion<br>Cost |  |
|--------------------------|--------------|--------------|----------------|----------------------|--------------|--------------------------|--------------|--------------------------|--|
| Urban Area               |              |              |                |                      |              |                          |              |                          |  |
|                          | (1000 Hours) | Rank         | (1000 Gallons) | Rank                 | (\$ million) | Rank                     | (\$ million) | Rank                     |  |
| Small Average (22 areas) | 4,262        |              | 3,754          |                      | 31           |                          | 104          |                          |  |
| Columbia SC              | 8,232        | 67           | 6,318          | 70                   | 66           | 59                       | 202          | 63                       |  |
| Cape Coral FL            | 7,465        | 71           | 5,932          | 75                   | 58           | 62                       | 183          | 69                       |  |
| Little Rock AR           | 7,424        | 72           | 7,247          | 66                   | 51           | 70                       | 179          | 71                       |  |
| Knoxville TN             | 7,338        | 73           | 6,270          | 72                   | 45           | 73                       | 170          | 72                       |  |
| Jackson MS               | 5,607        | 81           | 5,571          | 77                   | 70           | 57                       | 161          | 75                       |  |
| Worcester MA             | 6,051        | 79           | 4,997          | 80                   | 29           | 87                       | 135          | 81                       |  |
| Pensacola FL-AL          | 4,715        | 82           | 3,910          | 85                   | 26           | 90                       | 108          | 83                       |  |
| Spokane WA               | 4,247        | 86           | 2,837          | 94                   | 36           | 77                       | 106          | 85                       |  |
| Provo UT                 | 4,652        | 83           | 3,915          | 84                   | 21           | 93                       | 102          | 86                       |  |
| Winston-Salem NC         | 4,163        | 89           | 3,786          | 86                   | 32           | 82                       | 102          | 86                       |  |
| Salem OR                 | 4,119        | 90           | 3,409          | 89                   | 30           | 86                       | 100          | 89                       |  |
| Greensboro NC            | 3,560        | 91           | 3,311          | 90                   | 33           | 79                       | 93           | 90                       |  |
| Boise ID                 | 4,236        | 87           | 3,546          | 87                   | 16           | 98                       | 91           | 91                       |  |
| Beaumont TX              | 3,536        | 92           | 3,529          | 88                   | 25           | 91                       | 86           | 92                       |  |
| Madison WI               | 3,118        | 93           | 3,073          | 93                   | 25           | 91                       | 79           | 93                       |  |
| Stockton CA              | 2,716        | 95           | 2,572          | 95                   | 28           | 88                       | 73           | 94                       |  |
| Anchorage AK             | 2,969        | 94           | 2,487          | 96                   | 19           | 95                       | 72           | 95                       |  |
| Corpus Christi TX        | 2,499        | 96           | 3,229          | 92                   | 19           | 95                       | 63           | 96                       |  |
| Laredo TX                | 2,001        | 99           | 2,270          | 97                   | 20           | 94                       | 54           | 98                       |  |
| Brownsville TX           | 2,005        | 98           | 1,686          | 99                   | 19           | 95                       | 52           | 99                       |  |
| Eugene OR                | 1,568        | 100          | 1,476          | 100                  | 12           | 100                      | 39           | 100                      |  |
| Boulder CO               | 1,547        | 101          | 1,225          | 101                  | 5            | 101                      | 32           | 101                      |  |
| 101 Area Total           | 4,222,614    |              | 3,414,200      |                      | 28,596       |                          | 100,356      |                          |  |
| 101 Area Average         | 41,808       |              | 33,804         |                      | 283          |                          | 994          |                          |  |
| Remaining Area Total     | 575,407      |              | 511,894        |                      | 4,657        |                          | 14,403       |                          |  |
| Remaining Area Average   | 1,702        |              | 1,514          |                      | 14           |                          | 43           |                          |  |
| All 439 Areas Total      | 4,798,019    |              | 3,926,093      |                      | 33,253       |                          | 114,759      |                          |  |
| All 439 Areas Average    | 10,929       |              | 8,943          |                      | 76           |                          | 262          |                          |  |

#### Table 2. What Congestion Means to Your Town, 2009, Continued

Very Large Urban Areas—over 3 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Small Urban Areas—less than 500,000 population.

Travel Delay—Value of extra travel time during the year (estimated at \$16 per hour of person travel).

Excess Fuel Consumed—Value of increased fuel consumption due to travel in congested conditions rather than free-flow conditions (estimated using state average cost per gallon). Truck Congestion Cost—Value of increased travel time, fuel and other operating costs of large trucks (estimated at \$106 per hour of truck time).

Congestion Cost—Value of delay, fuel and truck congestion cost.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

|                                     |            | olutions to Conge<br>Operational Treat | Public Transportation Savings |       |                       |      |                      |
|-------------------------------------|------------|----------------------------------------|-------------------------------|-------|-----------------------|------|----------------------|
| Urban Area                          | Treatments | Delay<br>(1000 Hours)                  | Cost<br>Rank (\$ Million)     |       | Delay<br>(1000 Hours) | Rank | Cost<br>(\$ Million) |
| Very Large Average (15 areas)       | 15,397     |                                        |                               | \$364 | 44,732                |      | \$1,071              |
| Los Angeles-Long Beach-Santa Ana CA | r,i,s,a,h  | 62,859                                 | 1                             | 1,464 | 33,187                | 4    | 773.2                |
| New York-Newark NY-NJ-CT            | r,i,s,a,h  | 45,089                                 | 2                             | 1,079 | 368,062               | 1    | 8,810.3              |
| Chicago IL-IN                       | r,i,s,a    | 16,064                                 | 3                             | 408   | 92,507                | 2    | 2,351.7              |
| Houston TX                          | r,i,s,a,h  | 14,954                                 | 4                             | 353   | 6,663                 | 12   | 157.1                |
| San Francisco-Oakland CA            | r,i,s,a,h  | 14,798                                 | 5                             | 341   | 28,660                | 6    | 660.4                |
| Washington DC-VA-MD                 | r,i,s,a,h  | 14,315                                 | 6                             | 322   | 34,120                | 3    | 766.6                |
| Miami FL                            | i,s,a,h    | 12,169                                 | 7                             | 282   | 9,356                 | 10   | 217.2                |
| Dallas-Fort Worth-Arlington TX      | r,i,s,a,h  | 10,085                                 | 8                             | 231   | 5,989                 | 14   | 136.9                |
| Philadelphia PA-NJ-DE-MD            | r,i,s,a,h  | 8,951                                  | 9                             | 215   | 26,378                | 7    | 633.0                |
| Seattle WA                          | r,i,s,a,h  | 7,296                                  | 10                            | 179   | 14,153                | 8    | 346.5                |
| San Diego CA                        | r,i,s,a    | 6,169                                  | 12                            | 145   | 6,286                 | 13   | 148.0                |
| Atlanta GA                          | r,i,s,a,h  | 5,424                                  | 13                            | 132   | 8,315                 | 11   | 202.0                |
| Boston MA-NH-RI                     | i,s,a      | 5,051                                  | 14                            | 115   | 32,885                | 5    | 745.5                |
| Phoenix AZ                          | r,i,s,a,h  | 4,538                                  | 15                            | 122   | 2,474                 | 22   | 66.5                 |
| Detroit MI                          | r,i,s,a    | 3,185                                  | 22                            | 74    | 1,947                 | 24   | 45.0                 |

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population.

Operational Treatments—Freeway incident management (i), freeway ramp metering (r), arterial street signal coordination (s), arterial street access management (a) and highoccupancy vehicle lanes (h).

Public Transportation—Regular route service from all public transportation providers in an urban area.

Delay savings are affected by the amount of treatment or service in each area, as well as the amount of congestion and the urban area population.

Congestion Cost Savings-Value of delay, fuel and truck congestion cost.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

|                             | (          | <b>Operational Treatr</b> | nent Savir | ngs          | Public Tran  | Public Transportation Savings |              |  |  |
|-----------------------------|------------|---------------------------|------------|--------------|--------------|-------------------------------|--------------|--|--|
|                             |            | Delay                     |            | Cost         | Delay        |                               | Cost         |  |  |
| Urban Area                  | Treatments | (1000 Hours)              | Rank       | (\$ Million) | (1000 Hours) | Rank                          | (\$ Million) |  |  |
| Large Average (31 areas)    |            | 1,896                     |            | \$45         | 2200         |                               | \$52         |  |  |
| Minneapolis-St. Paul MN     | r,i,s,a,h  | 7,166                     | 11         | 163.4        | 5,059        | 18                            | 115.4        |  |  |
| Baltimore MD                | i,s,a      | 4,412                     | 16         | 107.8        | 13,227       | 9                             | 323.2        |  |  |
| Denver-Aurora CO            | r,i,s,a,h  | 4,391                     | 17         | 99.9         | 5,931        | 15                            | 135.0        |  |  |
| Tampa-St. Petersburg FL     | i,s,a      | 3,952                     | 18         | 90.5         | 1,041        | 36                            | 23.8         |  |  |
| Portland OR-WA              | r,i,s,a,h  | 3,596                     | 19         | 84.9         | 5,422        | 17                            | 128.1        |  |  |
| Riverside-San Bernardino CA | r,i,s,a,h  | 3,470                     | 20         | 86.8         | 1,088        | 35                            | 27.2         |  |  |
| San Jose CA                 | r,i,s,a    | 3,458                     | 21         | 76.6         | 1,872        | 26                            | 41.5         |  |  |
| Virginia Beach VA           | i,s,a,h    | 2,690                     | 23         | 57.4         | 1,191        | 33                            | 25.4         |  |  |
| Sacramento CA               | r,i,s,a,h  | 2,644                     | 24         | 62.3         | 1,314        | 32                            | 31.0         |  |  |
| Orlando FL                  | i,s,a      | 2,308                     | 25         | 56.7         | 1,432        | 30                            | 35.2         |  |  |
| St. Louis MO-IL             | i,s,a      | 2,048                     | 26         | 52.0         | 2,909        | 21                            | 73.8         |  |  |
| Milwaukee WI                | r,i,s,a    | 1,836                     | 27         | 43.4         | 1,670        | 28                            | 39.5         |  |  |
| Las Vegas NV                | i,s,a      | 1,676                     | 28         | 37.5         | 1,447        | 29                            | 32.4         |  |  |
| Austin TX                   | i,s,a      | 1,503                     | 29         | 34.3         | 1,893        | 25                            | 43.2         |  |  |
| Pittsburgh PA               | i,s,a      | 1,433                     | 30         | 34.8         | 4,890        | 19                            | 118.8        |  |  |
| New Orleans LA              | i,s,a      | 1,237                     | 31         | 31.8         | 1,815        | 27                            | 46.7         |  |  |
| San Juan PR                 | s,a        | 1,200                     | 32         | 28.8         | 5,717        | 16                            | 137.4        |  |  |
| Jacksonville FL             | i,s,a      | 1,083                     | 33         | 26.1         | 409          | 48                            | 9.8          |  |  |
| San Antonio TX              | i,s,a      | 1,068                     | 34         | 24.1         | 1,331        | 31                            | 30.0         |  |  |
| Kansas City MO-KS           | i,s,a      | 1,050                     | 35         | 25.5         | 405          | 49                            | 9.8          |  |  |
| Nashville-Davidson TN       | i,s,a      | 1,000                     | 36         | 24.5         | 489          | 45                            | 12.0         |  |  |
| Charlotte NC-SC             | i,s,a      | 780                       | 39         | 19.8         | 645          | 42                            | 16.4         |  |  |
| Raleigh-Durham NC           | i,s,a      | 767                       | 41         | 19.5         | 660          | 41                            | 16.8         |  |  |
| Cleveland OH                | i,s,a      | 745                       | 43         | 16.7         | 2,145        | 23                            | 48.0         |  |  |
| Memphis TN-MS-AR            | i,s,a      | 679                       | 46         | 16.6         | 424          | 47                            | 10.3         |  |  |
| Cincinnati OH-KY-IN         | r,i,s,a    | 657                       | 48         | 16.1         | 1,152        | 34                            | 28.3         |  |  |
| Columbus OH                 | r,i,s,a    | 460                       | 55         | 10.4         | 302          | 57                            | 6.8          |  |  |
| Indianapolis IN             | i,s,a      | 433                       | 56         | 10.8         | 349          | 54                            | 8.7          |  |  |
| Louisville KY-IN            | i,s,a      | 422                       | 58         | 10.2         | 401          | 50                            | 9.7          |  |  |
| Providence RI-MA            | i,s,a      | 327                       | 62         | 7.2          | 754          | 39                            | 16.5         |  |  |
| Buffalo NY                  | i,s,a      | 292                       | 65         | 7.0          | 819          | 38                            | 19.7         |  |  |

Table 3. Solutions to Congestion Problems, 2009, Continued

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population.

Operational Treatments—Freeway incident management (i), freeway ramp metering (r), arterial street signal coordination (s), arterial street access management (a) and high-occupancy vehicle lanes (h).

Public Transportation-Regular route service from all public transportation providers in an urban area.

Delay savings are affected by the amount of treatment or service in each area, as well as the amount of congestion and the urban area population.

Congestion Cost Savings-Value of delay, fuel and truck congestion cost.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

| Table 3. Solutions to Congestion Problems, 2009, Continued |            |                           |            |              |              |           |              |  |  |  |
|------------------------------------------------------------|------------|---------------------------|------------|--------------|--------------|-----------|--------------|--|--|--|
|                                                            | C          | <b>Operational Treatr</b> | nent Saviı |              | Public Tran  | sportatio | n Savings    |  |  |  |
|                                                            |            | Delay                     |            | Cost         | Delay        |           | Cost         |  |  |  |
| Urban Area                                                 | Treatments | (1000 Hours)              | Rank       | (\$ Million) | (1000 Hours) | Rank      | (\$ Million) |  |  |  |
| Medium Average (33 areas)                                  |            | 375                       |            | \$9.0        | 361          |           | \$8.4        |  |  |  |
| Bridgeport-Stamford CT-NY                                  | i,s,a      | 876                       | 37         | 21.2         | 303          | 56        | 7.3          |  |  |  |
| Baton Rouge LA                                             | i,s,a      | 838                       | 38         | 23.1         | 135          | 82        | 3.7          |  |  |  |
| Salt Lake City UT                                          | r,i,s,a    | 777                       | 40         | 17.2         | 3,325        | 20        | 73.4         |  |  |  |
| Birmingham AL                                              | i,s,a      | 763                       | 42         | 17.9         | 203          | 73        | 4.8          |  |  |  |
| Honolulu HI                                                | i,s,a      | 734                       | 44         | 16.6         | 443          | 46        | 10.0         |  |  |  |
| Albuquerque NM                                             | i,s,a      | 727                       | 45         | 19.3         | 218          | 65        | 5.8          |  |  |  |
| Tucson AZ                                                  | i,s,a      | 665                       | 47         | 18.7         | 358          | 53        | 10.1         |  |  |  |
| Omaha NE-IA                                                | i,s,a      | 646                       | 49         | 13.6         | 143          | 81        | 3.0          |  |  |  |
| El Paso TX-NM                                              | i,s,a      | 632                       | 50         | 15.3         | 732          | 40        | 17.7         |  |  |  |
| Hartford CT                                                | i,s,a      | 584                       | 51         | 13.3         | 893          | 37        | 20.4         |  |  |  |
| Sarasota-Bradenton FL                                      | i,s,a      | 544                       | 52         | 12.6         | 124          | 84        | 2.9          |  |  |  |
| Richmond VA                                                | i,s,a      | 509                       | 53         | 11.0         | 533          | 44        | 11.5         |  |  |  |
| Fresno CA                                                  | r,i,s,a    | 476                       | 54         | 11.8         | 205          | 72        | 5.1          |  |  |  |
| Colorado Springs CO                                        | i,s,a      | 417                       | 59         | 9.2          | 395          | 52        | 8.7          |  |  |  |
| New Haven CT                                               | i,s,a      | 395                       | 60         | 9.4          | 276          | 58        | 6.6          |  |  |  |
| Charleston-North Charleston SC                             | i,s,a      | 298                       | 64         | 7.4          | 106          | 86        | 2.6          |  |  |  |
| Wichita KS                                                 | i,s,a      | 241                       | 66         | 5.4          | 221          | 64        | 4.9          |  |  |  |
| Allentown-Bethlehem PA-NJ                                  | r,i,s,a    | 240                       | 67         | 5.7          | 260          | 59        | 6.2          |  |  |  |
| Oxnard-Ventura CA                                          | i,s,a      | 237                       | 68         | 5.7          | 154          | 79        | 3.7          |  |  |  |
| Albany-Schenectady NY                                      | i,s,a      | 221                       | 69         | 5.4          | 340          | 55        | 8.2          |  |  |  |
| Indio-Cathedral City-Palm Springs CA                       | i,s,a      | 195                       | 72         | 4.8          | 159          | 77        | 3.9          |  |  |  |
| Oklahoma City OK                                           | i,s,a      | 178                       | 76         | 4.1          | 110          | 85        | 2.5          |  |  |  |
| Grand Rapids MI                                            | s,a        | 168                       | 78         | 4.0          | 258          | 60        | 6.1          |  |  |  |
| Bakersfield CA                                             | i,s,a      | 165                       | 79         | 4.7          | 210          | 69        | 6.0          |  |  |  |
| Dayton OH                                                  | s,a        | 165                       | 79         | 3.8          | 209          | 71        | 4.8          |  |  |  |
| Rochester NY                                               | i,s,a      | 160                       | 81         | 3.7          | 212          | 67        | 4.8          |  |  |  |
| Lancaster-Palmdale CA                                      | s,a        | 156                       | 82         | 3.4          | 604          | 43        | 13.3         |  |  |  |
| Springfield MA-CT                                          | i,s,a      | 153                       | 83         | 3.4          | 238          | 62        | 5.3          |  |  |  |
| Poughkeepsie-Newburgh NY                                   | s,a        | 55                        | 93         | 1.3          | 177          | 75        | 4.3          |  |  |  |
| Tulsa OK                                                   | i,s,a      | 55                        | 93         | 1.3          | 41           | 96        | 1.0          |  |  |  |
| Toledo OH-MI                                               | i,s,a      | 51                        | 95         | 1.2          | 153          | 80        | 3.5          |  |  |  |
| Akron OH                                                   | i,s,a      | 47                        | 96         | 1.0          | 155          | 78        | 3.4          |  |  |  |
| McAllen TX                                                 | s,a        | 16                        | 101        | 0.4          | 24           | 100       | 0.5          |  |  |  |

#### Table 3. Solutions to Congestion Problems, 2009, Continued

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population. Small Urban Areas—less than 500,000 population.

Large Urban Areas—over 1 million and less than 3 million population.

Operational Treatments—Freeway incident management (i), freeway ramp metering (r), arterial street signal coordination (s), arterial street access management (a) and high-occupancy vehicle lanes (h). Public Transportation—Regular route service from all public transportation providers in an urban area.

Delay savings are affected by the amount of treatment or service in each area, as well as the amount of congestion and the urban area population.

Congestion Cost Savings-Value of delay, fuel and truck congestion cost.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined. Also note: The best congestion comparisons use multi-year trends and are made between similar urban areas.

|                          | 0          | Public Tran  | ic Transportation Savings |              |              |      |              |  |
|--------------------------|------------|--------------|---------------------------|--------------|--------------|------|--------------|--|
|                          |            | Delay        |                           | Cost         | Delay        | •    | Cost         |  |
| Urban Area               | Treatments | (1000 Hours) | Rank                      | (\$ Million) | (1000 Hours) | Rank | (\$ Million) |  |
| Small Average (22 areas) |            | 148          |                           | \$3.6        | 126          |      | \$3.1        |  |
| Little Rock AR           | i,s,a      | 433          | 56                        | 10.4         | 21           | 101  | 0.5          |  |
| Cape Coral FL            | i,s,a      | 375          | 61                        | 9.2          | 129          | 83   | 3.2          |  |
| Knoxville TN             | i,s,a      | 310          | 63                        | 7.2          | 49           | 93   | 1.1          |  |
| Winston-Salem NC         | i,s,a      | 208          | 70                        | 5.1          | 40           | 98   | 1.0          |  |
| Provo UT                 | i,s,a      | 207          | 71                        | 4.5          | 45           | 94   | 1.0          |  |
| Jackson MS               | s,a        | 193          | 73                        | 5.5          | 54           | 92   | 1.6          |  |
| Worcester MA             | s,a        | 192          | 74                        | 4.3          | 58           | 91   | 1.3          |  |
| Spokane WA               | i,s,a      | 190          | 75                        | 4.7          | 400          | 51   | 10.0         |  |
| Greensboro NC            | i,s,a      | 178          | 76                        | 4.7          | 103          | 87   | 2.7          |  |
| Columbia SC              | i,s,a      | 150          | 84                        | 3.7          | 245          | 61   | 6.0          |  |
| Stockton CA              | i,s,a      | 123          | 85                        | 3.3          | 183          | 74   | 4.9          |  |
| Salem OR                 | s,a        | 95           | 86                        | 2.3          | 214          | 66   | 5.2          |  |
| Eugene OR                | i,s,a      | 84           | 87                        | 2.1          | 234          | 63   | 5.8          |  |
| Anchorage AK             | s,a        | 83           | 88                        | 2.0          | 211          | 68   | 5.1          |  |
| Beaumont TX              | s,a        | 83           | 88                        | 2.0          | 34           | 99   | 0.8          |  |
| Boise ID                 | i,s,a      | 75           | 90                        | 1.6          | 41           | 96   | 0.9          |  |
| Pensacola FL-AL          | s,a        | 74           | 91                        | 1.7          | 45           | 94   | 1.0          |  |
| Madison WI               | s,a        | 65           | 92                        | 1.6          | 210          | 69   | 5.3          |  |
| Laredo TX                | i,s,a      | 39           | 97                        | 1.1          | 100          | 88   | 2.7          |  |
| Brownsville TX           | s,a        | 37           | 98                        | 1.0          | 172          | 76   | 4.5          |  |
| Boulder CO               | s,a        | 35           | 99                        | 0.7          | 80           | 90   | 1.7          |  |
| Corpus Christi TX        | s,a        | 23           | 100                       | 0.6          | 96           | 89   | 2.4          |  |
| 101 Area Total           |            | 305,370      |                           | 7,220        | 753,870      |      | 18,025       |  |
| 101 Area Average         |            | 3,023        |                           | 71           | 7,464        |      | 178          |  |
| All Urban Areas Total    |            | 321,132      |                           | 7,615        | 783,185      |      | 18,758       |  |
| All Urban Areas Average  |            | 732          |                           | 17           | 1,784        |      | 43           |  |

Table 3. Solutions to Congestion Problems, 2009, Continued

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population. Small Urban Areas—less than 500,000 population.

Operational Treatments—Freeway incident management (i), freeway ramp metering (r), arterial street signal coordination (s), arterial street access management (a) and highoccupancy vehicle lanes (h).

Public Transportation—Regular route service from all public transportation providers in an urban area.

Delay savings are affected by the amount of treatment or service in each area, as well as the amount of congestion and the urban area population.

Congestion Cost Savings—Value of delay, fuel and truck congestion cost.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

| Urban Area                          | Delay Per | Auto Commuter | Delay per Non | -Peak Traveler | Commuter Stress Index |      |
|-------------------------------------|-----------|---------------|---------------|----------------|-----------------------|------|
| Urban Area                          | Hours     | Rank          | Hours         | Rank           | Value                 | Rank |
| Very Large Area (15 areas)          | 50        |               | 13            |                | 1.37                  |      |
| Washington DC-VA-MD                 | 70        | 1             | 16            | 2              | 1.43                  | 2    |
| Chicago IL-IN                       | 70        | 1             | 19            | 1              | 1.36                  | 7    |
| Los Angeles-Long Beach-Santa Ana CA | 63        | 3             | 16            | 2              | 1.54                  | 1    |
| Houston TX                          | 58        | 4             | 13            | 6              | 1.37                  | 6    |
| San Francisco-Oakland CA            | 49        | 6             | 13            | 6              | 1.39                  | 3    |
| Boston MA-NH-RI                     | 48        | 7             | 11            | 14             | 1.29                  | 21   |
| Dallas-Fort Worth-Arlington TX      | 48        | 7             | 13            | 6              | 1.33                  | 15   |
| Atlanta GA                          | 44        | 10            | 11            | 14             | 1.31                  | 17   |
| Seattle WA                          | 44        | 10            | 11            | 14             | 1.35                  | 9    |
| New York-Newark NY-NJ-CT            | 42        | 13            | 11            | 14             | 1.38                  | 4    |
| Miami FL                            | 39        | 15            | 12            | 11             | 1.32                  | 16   |
| Philadelphia PA-NJ-DE-MD            | 39        | 15            | 12            | 11             | 1.26                  | 23   |
| San Diego CA                        | 37        | 18            | 11            | 14             | 1.25                  | 25   |
| Phoenix AZ                          | 36        | 20            | 10            | 23             | 1.30                  | 18   |
| Detroit MI                          | 33        | 26            | 12            | 11             | 1.19                  | 43   |

Table 4. Other Congestion Measures, 2009

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population. Yearly Delay per Auto Commuter-Extra travel time during the year divided by the number of people who commute in private vehicles in the urban area.

Yearly Delay per Non-Peak Traveler-Extra travel time during midday, evening and weekends divided by the number of private vehicle travelers who do not typically travel in the peak periods.

Commuter Stress Index—The ratio of travel time in the peak period to the travel time at free-flow conditions for the peak directions of travel in both peak periods. A value of 1.40 indicates a 20-minute free-flow trip takes 28 minutes in the most congested directions of the peak periods.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

| ⊐                                                              |                                                                                                                         |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| l's 2(                                                         | Urban Area                                                                                                              |
| TTI's 2010 Urban Mobility Report Powered by INRIX Traffic Data | Large Area Average (31 areas)<br>Baltimore MD<br>Denver-Aurora CO<br>Minneapolis-St. Paul MN<br>Orlando FL<br>Austin TX |
| obility Repor                                                  | Portland OR-WA<br>San Jose CA<br>Nashville-Davidson TN<br>Tampa-St. Petersburg FL<br>San Juan PR                        |
| t Powered                                                      | Pittsburgh PA<br>Las Vegas NV<br>Virginia Beach VA<br>New Orleans LA<br>St. Louis MO-IL                                 |
| by INRIX Ti                                                    | San Antonio TX<br>Riverside-San Bernardino CA<br>Charlotte NC-SC<br>Jacksonville FL<br>Milwaukee WI                     |
| raffic Data                                                    | Indianapolis IN<br>Raleigh-Durham NC<br>Sacramento CA<br>Memphis TN-MS-AR<br>Louisville KY-IN                           |
|                                                                | Kansas City MO-KS                                                                                                       |

#### Table 4. Other Congestion Measures, 2009, Continued

Delay Per Auto Commuter Delay per Non-Peak Traveler **Commuter Stress Index** Hours Rank Hours Rank Value Rank 1.24 1.25 1.30 1.30 1.25 1.38 1.34 1.35 1.22 1.21 1.34 1.23 1.36 1.29 1.21 1.16 1.25 1.25 1.24 1.17 1.24 1.21 1.18 1.26 1.18 1.14 1.15 Cincinnati OH-KY-IN 1.19 **Cleveland OH** 1.14 Providence RI-MA 1.20 Columbus OH 1.18 **Buffalo NY** 1.14

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas-over 1 million and less than 3 million population. Small Urban Areas—less than 500,000 population.

Yearly Delay per Auto Commuter-Extra travel time during the year divided by the number of people who commute in private vehicles in the urban area.

Yearly Delay per Non-Peak Traveler-Extra travel time during midday, evening and weekends divided by the number of private vehicle travelers who do not typically travel in the peak periods. Commuter Stress Index—The ratio of travel time in the peak period to the travel time at free-flow conditions for the peak directions of travel in both peak periods. A value of 1.40 indicates a 20minute free-flow trip takes 28 minutes in the most congested directions of the peak periods.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

|                                      |       | Auto Commuter | Delay per Non |      | Commuter Stress Index |      |
|--------------------------------------|-------|---------------|---------------|------|-----------------------|------|
| Urban Area                           | Hours | Rank          | Hours         | Rank | Value                 | Rank |
| Medium Area Average (33 areas)       | 22    |               | 7             |      | 1.15                  |      |
| Baton Rouge LA                       | 37    | 18            | 9             | 30   | 1.34                  | 12   |
| Bridgeport-Stamford CT-NY            | 35    | 22            | 9             | 30   | 1.35                  | 9    |
| Honolulu HI                          | 31    | 31            | 8             | 44   | 1.25                  | 25   |
| Colorado Springs CO                  | 31    | 31            | 13            | 6    | 1.16                  | 54   |
| New Haven CT                         | 29    | 38            | 9             | 30   | 1.23                  | 33   |
| Birmingham AL                        | 28    | 39            | 9             | 30   | 1.21                  | 37   |
| Salt Lake City UT                    | 28    | 39            | 9             | 30   | 1.18                  | 46   |
| Charleston-North Charleston SC       | 27    | 41            | 9             | 30   | 1.21                  | 37   |
| Albuquerque NM                       | 26    | 42            | 8             | 44   | 1.19                  | 43   |
| Oklahoma City OK                     | 25    | 45            | 8             | 44   | 1.14                  | 62   |
| Hartford CT                          | 24    | 50            | 7             | 61   | 1.18                  | 46   |
| Tucson AZ                            | 23    | 55            | 9             | 30   | 1.15                  | 58   |
| Allentown-Bethlehem PA-NJ            | 22    | 57            | 9             | 30   | 1.11                  | 72   |
| El Paso TX-NM                        | 21    | 59            | 6             | 76   | 1.23                  | 33   |
| Wichita KS                           | 20    | 65            | 8             | 44   | 1.09                  | 83   |
| Omaha NE-IA                          | 20    | 65            | 7             | 61   | 1.11                  | 72   |
| Oxnard-Ventura CA                    | 19    | 68            | 7             | 61   | 1.16                  | 54   |
| Richmond VA                          | 19    | 68            | 8             | 44   | 1.08                  | 90   |
| Springfield MA-CT                    | 19    | 68            | 7             | 61   | 1.12                  | 68   |
| Grand Rapids MI                      | 19    | 68            | 8             | 44   | 1.08                  | 90   |
| Albany-Schenectady NY                | 18    | 77            | 7             | 61   | 1.13                  | 66   |
| Lancaster-Palmdale CA                | 18    | 77            | 6             | 76   | 1.13                  | 66   |
| Tulsa OK                             | 18    | 77            | 7             | 61   | 1.10                  | 79   |
| Sarasota-Bradenton FL                | 17    | 80            | 7             | 61   | 1.11                  | 72   |
| Akron OH                             | 16    | 84            | 5             | 89   | 1.07                  | 94   |
| Dayton OH                            | 15    | 87            | 5             | 89   | 1.09                  | 83   |
| Fresno CA                            | 14    | 90            | 5             | 89   | 1.09                  | 83   |
| Indio-Cathedral City-Palm Springs CA | 14    | 90            | 6             | 76   | 1.18                  | 46   |
| Rochester NY                         | 12    | 95            | 4             | 99   | 1.10                  | 79   |
| Toledo OH-MI                         | 12    | 95            | 5             | 89   | 1.07                  | 94   |
| Bakersfield CA                       | 11    | 98            | 4             | 99   | 1.11                  | 72   |
| Poughkeepsie-Newburgh NY             | 11    | 98            | 5             | 89   | 1.05                  | 99   |
| McAllen TX                           | 7     | 104           | 2             | 104  | 1.11                  | 72   |

#### Table 4. Other Congestion Measures, 2009, Continued

Very Large Urban Areas—over 3 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Yearly Delay per Auto Commuter-Extra travel time during the year divided by the number of people who commute in private vehicles in the urban area.

Yearly Delay per Non-Peak Traveler—Extra travel time during midday, evening and weekends divided by the number of private vehicle travelers who do not typically travel in the peak periods. Commuter Stress Index—The ratio of travel time in the peak period to the travel time at free-flow conditions for the peak directions of travel in both peak periods. A value of 1.40 indicates a 20minute free-flow trip takes 28 minutes in the most congested directions of the peak periods.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

Medium Urban Areas—over 500,000 and less than 1 million population.

Small Urban Areas—less than 500,000 population.

| Urban Area                    | Delay Per / | Auto Commuter | Delay per Non | -Peak Traveler |       | Stress Index |
|-------------------------------|-------------|---------------|---------------|----------------|-------|--------------|
| Orban Area                    | Hours       | Rank          | Hours         | Rank           | Value | Rank         |
| Small Area Average (22 areas) | 18          |               | 7             |                | 1.10  |              |
| Columbia SC                   | 25          | 45            | 9             | 30             | 1.12  | 68           |
| Little Rock AR                | 24          | 50            | 8             | 44             | 1.15  | 58           |
| Salem OR                      | 24          | 50            | 10            | 23             | 1.12  | 68           |
| Cape Coral FL                 | 23          | 55            | 8             | 44             | 1.15  | 58           |
| Boise ID                      | 21          | 59            | 6             | 76             | 1.18  | 46           |
| Knoxville TN                  | 21          | 59            | 8             | 44             | 1.09  | 83           |
| Beaumont TX                   | 21          | 59            | 8             | 44             | 1.11  | 72           |
| Worcester MA                  | 20          | 65            | 7             | 61             | 1.10  | 79           |
| Pensacola FL-AL               | 19          | 68            | 7             | 61             | 1.09  | 83           |
| Jackson MS                    | 19          | 68            | 8             | 44             | 1.09  | 83           |
| Winston-Salem NC              | 16          | 84            | 6             | 76             | 1.07  | 94           |
| Spokane WA                    | 16          | 84            | 6             | 76             | 1.12  | 68           |
| Boulder CO                    | 15          | 87            | 5             | 89             | 1.16  | 54           |
| Greensboro NC                 | 15          | 87            | 6             | 76             | 1.07  | 94           |
| Brownsville TX                | 14          | 90            | 5             | 89             | 1.05  | 99           |
| Anchorage AK                  | 14          | 90            | 6             | 76             | 1.06  | 98           |
| Provo UT                      | 14          | 90            | 6             | 76             | 1.08  | 90           |
| Laredo TX                     | 12          | 95            | 5             | 89             | 1.08  | 90           |
| Madison WI                    | 11          | 98            | 4             | 99             | 1.09  | 83           |
| Corpus Christi TX             | 10          | 101           | 5             | 89             | 1.10  | 79           |
| Eugene OR                     | 9           | 102           | 3             | 103            | 1.11  | 72           |
| Stockton CA                   | 9           | 102           | 4             | 99             | 1.03  | 101          |
| 101 Area Average              | 39          |               | 11            |                | 1.29  |              |
| Remaining Area Average        | 18          |               | 7             |                | 1.13  |              |
| All 439 Area Average          | 34          |               | 10            |                | 1.29  |              |

#### Table 4. Other Congestion Measures, 2009, Continued

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population.

Yearly Delay per Auto Commuter—Extra travel time during the year divided by the number of people who commute in private vehicles in the urban area.

Yearly Delay per Non-Peak Traveler—Extra travel time during midday, evening and weekends divided by the number of private vehicle travelers who do not typically travel in the peak periods.

Commuter Stress Index—The ratio of travel time in the peak period to the travel time at free-flow conditions for the peak directions of travel in both peak periods. A value of 1.40 indicates a 20-minute free-flow trip takes 28 minutes in the most congested directions of the peak periods.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

|                                     | Total Del    | ay   |              | Truck [ | Delay                           | Truck Commodity Value |      |
|-------------------------------------|--------------|------|--------------|---------|---------------------------------|-----------------------|------|
| Urban Area                          | (1000 Hours) | Rank | (1000 Hours) | Rank    | Congestion Cost<br>(\$ million) | (\$ million)          | Rank |
| Very Large Average (15 areas)       | 185,503      |      | 12,046       |         | 1,273                           | 169,837               |      |
| Chicago IL-IN                       | 372,755      | 3    | 31,695       | 1       | 3,349                           | 428,790               | 1    |
| Los Angeles-Long Beach-Santa Ana CA | 514,955      | 1    | 30,285       | 2       | 3,200                           | 294,112               | 3    |
| New York-Newark NY-NJ-CT            | 454,443      | 2    | 29,645       | 3       | 3,133                           | 314,936               | 2    |
| Philadelphia PA-NJ-DE-MD            | 136,429      | 8    | 9,149        | 4       | 967                             | 117,097               | 9    |
| Dallas-Fort Worth-Arlington TX      | 159,654      | 5    | 8,967        | 5       | 948                             | 170,030               | 5    |
| Washington DC-VA-MD                 | 180,976      | 4    | 8,947        | 6       | 945                             | 99,477                | 14   |
| Houston TX                          | 144,302      | 6    | 8,896        | 7       | 940                             | 210,975               | 4    |
| Miami FL                            | 140,972      | 7    | 8,351        | 8       | 883                             | 120,837               | 8    |
| Atlanta GA                          | 112,262      | 11   | 8,060        | 9       | 852                             | 153,549               | 7    |
| Phoenix AZ                          | 80,390       | 15   | 7,942        | 10      | 839                             | 99,567                | 13   |
| San Francisco-Oakland CA            | 121,117      | 9    | 6,798        | 11      | 718                             | 101,772               | 12   |
| Boston MA-NH-RI                     | 118,707      | 10   | 6,248        | 12      | 660                             | 103,423               | 11   |
| Seattle WA                          | 86,549       | 13   | 6,240        | 13      | 659                             | 110,369               | 10   |
| Detroit MI                          | 87,996       | 12   | 5,219        | 15      | 551                             | 161,319               | 6    |
| San Diego CA                        | 71,034       | 18   | 4,255        | 16      | 450                             | 61,303                | 26   |

Truck Commodity Value and Truck Delay, 2000 Table F

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population. Small Urban Areas—less than 500,000 population.

Large Urban Areas—over 1 million and less than 3 million population.

Travel Delay—Travel time above that needed to complete a trip at free-flow speeds for all vehicles.

Truck Delay—Travel time above that needed to complete a trip at free-flow speeds for large trucks. Truck Commodity Value—Value of all commodities moved by truck estimated to be traveling in the urban area.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

|                             | Total Del    | ay   |              | Truck [ | Delay                          | Truck Comm   | odity Value |
|-----------------------------|--------------|------|--------------|---------|--------------------------------|--------------|-------------|
| Urban Area                  | (1000 Hours) | Rank | (1000 Hours) | Rank    | Congestion Cost<br>(\$million) | (\$ million) | Rank        |
| Large Average (31 areas)    | 32,953       |      | 2,046        |         | 216                            | 52,938       |             |
| Baltimore MD                | 82,836       | 14   | 5,871        | 14      | 620                            | 69,724       | 21          |
| St. Louis MO-IL             | 48,777       | 21   | 4,092        | 17      | 432                            | 91,101       | 16          |
| Denver-Aurora CO            | 75,196       | 16   | 4,080        | 18      | 431                            | 64,915       | 24          |
| Minneapolis-St. Paul MN     | 74,070       | 17   | 3,867        | 19      | 409                            | 91,617       | 15          |
| Riverside-San Bernardino CA | 39,008       | 26   | 3,001        | 20      | 317                            | 78,214       | 17          |
| Tampa-St. Petersburg FL     | 54,130       | 19   | 2,985        | 21      | 315                            | 61,111       | 27          |
| Orlando FL                  | 39,185       | 25   | 2,895        | 22      | 306                            | 56,464       | 32          |
| Pittsburgh PA               | 39,718       | 24   | 2,724        | 23      | 288                            | 54,008       | 33          |
| Portland OR-WA              | 40,554       | 23   | 2,506        | 24      | 265                            | 57,608       | 31          |
| San Juan PR                 | 49,526       | 20   | 2,383        | 25      | 252                            | 29,316       | 48          |
| Nashville-Davidson TN       | 25,443       | 32   | 1,905        | 26      | 201                            | 61,558       | 25          |
| San Jose CA                 | 42,313       | 22   | 1,869        | 27      | 197                            | 40,506       | 40          |
| New Orleans LA              | 19,867       | 39   | 1,782        | 28      | 188                            | 23,074       | 52          |
| Sacramento CA               | 28,461       | 31   | 1,689        | 29      | 178                            | 47,397       | 36          |
| Austin TX                   | 30,272       | 28   | 1,644        | 30      | 174                            | 33,185       | 46          |
| Indianapolis IN             | 20,164       | 38   | 1,600        | 31      | 169                            | 67,586       | 22          |
| Cincinnati OH-KY-IN         | 21,391       | 36   | 1,570        | 32      | 166                            | 60,194       | 28          |
| Raleigh-Durham NC           | 18,541       | 41   | 1,532        | 33      | 162                            | 41,299       | 38          |
| Milwaukee WI                | 24,113       | 33   | 1,532        | 34      | 162                            | 70,301       | 20          |
| Kansas City MO-KS           | 22,172       | 34   | 1,529        | 35      | 162                            | 73,291       | 18          |
| Las Vegas NV                | 30,077       | 29   | 1,447        | 37      | 153                            | 28,730       | 49          |
| San Antonio TX              | 29,446       | 30   | 1,444        | 38      | 153                            | 42,175       | 37          |
| Charlotte NC-SC             | 17,207       | 44   | 1,432        | 39      | 151                            | 59,720       | 30          |
| Virginia Beach VA           | 33,469       | 27   | 1,273        | 42      | 135                            | 31,092       | 47          |
| Memphis TN-MS-AR            | 17,639       | 43   | 1,256        | 43      | 133                            | 59,962       | 29          |
| Jacksonville FL             | 18,481       | 42   | 1,228        | 44      | 130                            | 12,751       | 64          |
| Louisville KY-IN            | 16,019       | 47   | 1,131        | 45      | 120                            | 51,724       | 34          |
| Cleveland OH                | 21,859       | 35   | 1,055        | 46      | 111                            | 71,825       | 19          |
| Columbus OH                 | 14,282       | 50   | 728          | 51      | 77                             | 65,159       | 23          |
| Buffalo NY                  | 11,660       | 56   | 717          | 53      | 76                             | 24,299       | 51          |
| Providence RI-MA            | 15,679       | 48   | 665          | 57      | 70                             | 21,180       | 53          |

Table 5. Truck Commodity Value and Truck Delay, 2009, Continued

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population. Small Urban Areas—less than 500,000 population.

Large Urban Areas—over 1 million and less than 3 million population. Travel Delay—Travel time above that needed to complete a trip at free-flow speeds for all vehicles.

Truck Delay—Travel time above that needed to complete a trip at free-flow speeds for large trucks.

Truck Commodity Value—Value of all commodities moved by truck estimated to be traveling in the urban area.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

| Ia                                   | ble 5. Truck Cor |      | value and Truck |         | ,                               |              |             |
|--------------------------------------|------------------|------|-----------------|---------|---------------------------------|--------------|-------------|
|                                      | Total Dela       | ay   |                 | Truck I | Delay                           | Truck Comme  | odity Value |
| Urban Area                           | (1000 Hours)     | Rank | (1000 Hours)    | Rank    | Congestion Cost<br>(\$ million) | (\$ million) | Rank        |
| Medium Average (33 areas)            | 9,841            |      | 606             |         | 64                              | 15,983       |             |
| Baton Rouge LA                       | 14,017           | 52   | 1,529           | 36      | 162                             | 14,891       | 59          |
| Bridgeport-Stamford CT-NY            | 20,972           | 37   | 1,344           | 40      | 142                             | 14,228       | 60          |
| Tucson AZ                            | 11,282           | 57   | 1,300           | 41      | 137                             | 20,340       | 54          |
| Albuquerque NM                       | 10,798           | 58   | 1,042           | 47      | 110                             | 12,505       | 66          |
| Birmingham AL                        | 16,227           | 46   | 996             | 48      | 105                             | 36,399       | 45          |
| Oklahoma City OK                     | 16,335           | 45   | 959             | 49      | 101                             | 38,963       | 42          |
| Salt Lake City UT                    | 18,789           | 40   | 861             | 50      | 91                              | 49,502       | 35          |
| New Haven CT                         | 11,956           | 55   | 720             | 52      | 76                              | 10,509       | 69          |
| Hartford CT                          | 14,072           | 51   | 698             | 54      | 74                              | 15,782       | 56          |
| Charleston-North Charleston SC       | 9,189            | 61   | 689             | 55      | 73                              | 10,338       | 70          |
| El Paso TX-NM                        | 10,020           | 59   | 684             | 56      | 72                              | 9,460        | 73          |
| Allentown-Bethlehem PA-NJ            | 9,998            | 60   | 612             | 60      | 65                              | 13,582       | 62          |
| Honolulu HI                          | 14,394           | 49   | 569             | 61      | 60                              | 7,372        | 82          |
| Colorado Springs CO                  | 12,074           | 54   | 552             | 62      | 58                              | 5,979        | 89          |
| Oxnard-Ventura CA                    | 8,921            | 62   | 551             | 63      | 58                              | 7,370        | 83          |
| Albany-Schenectady NY                | 7,844            | 69   | 520             | 65      | 55                              | 18,600       | 55          |
| Tulsa OK                             | 8,621            | 64   | 513             | 66      | 54                              | 37,508       | 44          |
| Richmond VA                          | 12,895           | 53   | 510             | 67      | 54                              | 39,879       | 41          |
| Sarasota-Bradenton FL                | 8,563            | 65   | 489             | 68      | 52                              | 7,122        | 85          |
| Grand Rapids MI                      | 8,131            | 68   | 489             | 69      | 52                              | 38,254       | 43          |
| Bakersfield CA                       | 4,191            | 88   | 471             | 71      | 50                              | 8,695        | 77          |
| Fresno CA                            | 6,669            | 77   | 469             | 72      | 50                              | 7,601        | 79          |
| Indio-Cathedral City-Palm Springs CA | 5,703            | 80   | 418             | 74      | 44                              | 4,376        | 93          |
| Dayton OH                            | 7,479            | 70   | 394             | 75      | 42                              | 25,634       | 50          |
| Springfield MA-CT                    | 8,264            | 66   | 383             | 76      | 40                              | 12,606       | 65          |
| Lancaster-Palmdale CA                | 7,300            | 74   | 333             | 78      | 35                              | 2,188        | 98          |
| Wichita KS                           | 7,178            | 75   | 317             | 79      | 33                              | 6,492        | 88          |
| Akron OH                             | 6,713            | 76   | 315             | 80      | 33                              | 9,020        | 75          |
| Omaha NE-IA                          | 8,737            | 63   | 304             | 82      | 32                              | 7,441        | 81          |
| Poughkeepsie-Newburgh NY             | 4,373            | 85   | 291             | 84      | 31                              | 9,048        | 74          |
| Rochester NY                         | 6,124            | 78   | 291             | 85      | 31                              | 8,858        | 76          |
| Toledo OH-MI                         | 4,427            | 84   | 261             | 89      | 28                              | 10,057       | 72          |
| McAllen TX                           | 2,494            | 97   | 131             | 99      | 14                              | 6,828        | 87          |

Table 5. Truck Commodity Value and Truck Delay, 2009, Continued

Very Large Urban Areas—over 3 million population. Large Urban Areas—over 1 million and less than 3 million population. Medium Urban Areas—over 500,000 and less than 1 million population. Small Urban Areas—less than 500,000 population.

Travel Delay—Travel time above that needed to complete a trip at free-flow speeds for all vehicles.

Truck Delay—Travel time above that needed to complete a trip at free-flow speeds for large trucks.

Truck Commodity Value—Value of all commodities moved by truck estimated to be traveling in the urban area.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

Also note: The best congestion comparisons use multi-year trends and are made between similar urban areas

|                          | Total Del    | ay   |              | Truck | Delay                           | Truck Comm   | odity Value |
|--------------------------|--------------|------|--------------|-------|---------------------------------|--------------|-------------|
| Urban Area               | (1000 Hours) | Rank | (1000 Hours) | Rank  | Congestion Cost<br>(\$ million) | (\$ million) | Rank        |
| Small Average (22 areas) | 4,262        |      | 296          |       | 31                              | 9,004        |             |
| Jackson MS               | 5,607        | 81   | 663          | 58    | 70                              | 15,008       | 58          |
| Columbia SC              | 8,232        | 67   | 627          | 59    | 66                              | 12,153       | 67          |
| Cape Coral FL            | 7,465        | 71   | 545          | 64    | 58                              | 7,480        | 80          |
| Little Rock AR           | 7,424        | 72   | 486          | 70    | 51                              | 13,438       | 63          |
| Knoxville TN             | 7,338        | 73   | 426          | 73    | 45                              | 10,205       | 71          |
| Spokane WA               | 4,247        | 86   | 340          | 77    | 36                              | 5,534        | 91          |
| Greensboro NC            | 3,560        | 91   | 314          | 81    | 33                              | 40,939       | 39          |
| Winston-Salem NC         | 4,163        | 89   | 298          | 83    | 32                              | 7,364        | 84          |
| Salem OR                 | 4,119        | 90   | 284          | 86    | 30                              | 3,278        | 96          |
| Norcester MA             | 6,051        | 79   | 278          | 87    | 29                              | 13,986       | 61          |
| Stockton CA              | 2,716        | 95   | 264          | 88    | 28                              | 8,234        | 78          |
| Pensacola FL-AL          | 4,715        | 82   | 250          | 90    | 26                              | 5,946        | 90          |
| Madison WI               | 3,118        | 93   | 238          | 91    | 25                              | 15,753       | 57          |
| Beaumont TX              | 3,536        | 92   | 238          | 92    | 25                              | 7,033        | 86          |
| Provo UT                 | 4,652        | 83   | 200          | 93    | 21                              | 10,902       | 68          |
| _aredo TX                | 2,001        | 99   | 193          | 94    | 20                              | 2,117        | 99          |
| Corpus Christi TX        | 2,499        | 96   | 181          | 95    | 19                              | 3,824        | 95          |
| Anchorage AK             | 2,969        | 94   | 180          | 96    | 19                              | 3,934        | 94          |
| Brownsville TX           | 2,005        | 98   | 177          | 97    | 19                              | 2,117        | 100         |
| Boise ID                 | 4,236        | 87   | 155          | 98    | 16                              | 5,051        | 92          |
| Eugene OR                | 1,568        | 100  | 117          | 100   | 12                              | 3,103        | 97          |
| Boulder CO               | 1,547        | 101  | 47           | 101   | 5                               | 749          | 101         |
| 101 Area Average         | 41,808       |      | 2,680        |       | 283                             | 48,655       |             |
| Remaining Area Average   | 1,702        |      | 130          |       | 14                              | 6,787        |             |
| All 439 Area Average     | 10,929       |      | 717          |       | 76                              | 16,420       |             |

Table 5. Truck Commodity Value and Truck Delay, 2009, Continued

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population.

Travel Delay—Travel time above that needed to complete a trip at free-flow speeds for all vehicles.

Truck Delay—Travel time above that needed to complete a trip at free-flow speeds for large trucks.

Truck Commodity Value—Value of all commodities moved by truck estimated to be traveling in the urban area.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

| State          | Total Truck Commodity Value | Rural Truck Commodity Value | Urban Truck Commodity Value |
|----------------|-----------------------------|-----------------------------|-----------------------------|
|                | (\$ million)                | (\$ million)                | (\$ million)                |
| Alabama        | 189,260                     | 67,453                      | 121,807                     |
| Alaska         | 15,471                      | 4,798                       | 10,673                      |
| Arizona        | 207,824                     | 125,037                     | 82,787                      |
| Arkansas       | 141,300                     | 26,140                      | 115,159                     |
| California     | 943,732                     | 706,912                     | 236,820                     |
| Colorado       | 136,145                     | 79,433                      | 56,712                      |
| Connecticut    | 83,544                      | 73,900                      | 9,644                       |
| Delaware       | 32,489                      | 20,991                      | 11,498                      |
| Florida        | 494,555                     | 211,689                     | 282,866                     |
| Georgia        | 339,330                     | 190,707                     | 148,623                     |
| Hawaii         | 12,893                      | 6,787                       | 6,106                       |
| Idaho          | 61,369                      | 11,612                      | 49,757                      |
| Illinois       | 637,415                     | 448,507                     | 188,908                     |
| Indiana        | 333,141                     | 145,834                     | 187,306                     |
| lowa           | 127,378                     | 21,299                      | 106,079                     |
| Kansas         | 119,642                     | 37,410                      | 82,232                      |
| Kentucky       | 220,204                     | 72,049                      | 148,155                     |
| Louisiana      | 165,536                     | 76,729                      | 88,808                      |
| Maine          | 37,646                      | 7,202                       | 30,444                      |
| Maryland       | 171,727                     | 130,530                     | 41,198                      |
| Massachusetts  | 155,744                     | 142,166                     | 13,578                      |
| Michigan       | 342,428                     | 246,781                     | 95,647                      |
| Minnesota      | 171,729                     | 97,683                      | 74,046                      |
| Mississippi    | 137,690                     | 30,264                      | 107,425                     |
| Missouri       | 234,124                     | 132,038                     | 102,086                     |
| Montana        | 35,583                      | 1,865                       | 33,718                      |
| Nebraska       | 83,543                      | 10,067                      | 73,476                      |
| Nevada         | 68,588                      | 34,267                      | 34,321                      |
| New Hampshire  | 35,583                      | 13,850                      | 21,734                      |
| New Jersey     | 206,282                     | 184,447                     | 21,835                      |
| New Mexico     | 99,012                      | 17,962                      | 81,050                      |
| New York       | 296,011                     | 222,436                     | 73,575                      |
| North Carolina | 320,249                     | 196,210                     | 124,039                     |
| North Dakota   | 34,036                      | 3,172                       | 30,864                      |

| Table 6. State Truck Commodity Value, 2009 | Table 6. | State Truck | Commoditv | Value, 2009 |
|--------------------------------------------|----------|-------------|-----------|-------------|
|--------------------------------------------|----------|-------------|-----------|-------------|

Total Truck Commodity Value—Value of all commodities moved by truck estimated to be traveling in the state. Rural Truck Commodity Value—Value of all commodities moved by truck estimated to be traveling in the rural areas of the state. Urban Truck Commodity Value—Value of all commodities moved by truck estimated to be traveling in the urban areas of the state.

|                      |                                             | Diffinitionity value, 2009, Continued       |                                             |
|----------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| State                | Total Truck Commodity Value<br>(\$ million) | Urban Truck Commodity Value<br>(\$ million) | Rural Truck Commodity Value<br>(\$ million) |
| Ohio                 | 416,171                                     | 253,053                                     | 163,118                                     |
| Oklahoma             | 207,825                                     | 77,273                                      | 130,552                                     |
| Oregon               | 133,050                                     | 63,347                                      | 69,704                                      |
| Pennsylvania         | 364,083                                     | 200,786                                     | 163,297                                     |
| Rhode Island         | 18,565                                      | 15,240                                      | 3,325                                       |
| South Carolina       | 174,307                                     | 55,599                                      | 118,708                                     |
| South Dakota         | 40,224                                      | 4,332                                       | 35,892                                      |
| Tennessee            | 278,993                                     | 145,569                                     | 133,424                                     |
| Texas                | 934,959                                     | 554,818                                     | 380,141                                     |
| Utah                 | 124,282                                     | 72,571                                      | 51,711                                      |
| Vermont              | 20,628                                      | 2,143                                       | 18,485                                      |
| Virginia             | 227,424                                     | 129,949                                     | 97,475                                      |
| Washington           | 204,216                                     | 133,913                                     | 70,303                                      |
| West Virginia        | 72,712                                      | 20,112                                      | 52,600                                      |
| Wisconsin            | 306,323                                     | 133,733                                     | 172,589                                     |
| Wyoming              | 40,739                                      | 2,123                                       | 38,616                                      |
| District of Columbia | 9,283                                       | 9,283                                       |                                             |
| Puerto Rico          | 48,991                                      | 44,563                                      | 4,429                                       |

| Table 6. State Truck Commodity Value, 2009, Continued |
|-------------------------------------------------------|
|-------------------------------------------------------|

Total Truck Commodity Value—Value of all commodities moved by truck estimated to be traveling in the state. Rural Truck Commodity Value—Value of all commodities moved by truck estimated to be traveling in the rural areas of the state. Urban Truck Commodity Value—Value of all commodities moved by truck estimated to be traveling in the urban areas of the state.

| Urban Area                          | Y    | Long-Term Change<br>1982 to 2009 |      |      |       |      |
|-------------------------------------|------|----------------------------------|------|------|-------|------|
|                                     | 2009 | 2008                             | 1999 | 1982 | Hours | Rank |
| Very Large Average (15 areas)       | 50   | 50                               | 49   | 19   | 31    |      |
| Chicago IL-IN                       | 70   | 64                               | 55   | 18   | 52    | 1    |
| Washington DC-VA-MD                 | 70   | 70                               | 70   | 20   | 50    | 2    |
| Dallas-Fort Worth-Arlington TX      | 48   | 49                               | 39   | 7    | 41    | 3    |
| Boston MA-NH-RI                     | 48   | 50                               | 41   | 13   | 35    | 6    |
| Houston TX                          | 58   | 63                               | 42   | 24   | 34    | 8    |
| Seattle WA                          | 44   | 47                               | 52   | 10   | 34    | 8    |
| New York-Newark NY-NJ-CT            | 42   | 42                               | 36   | 10   | 32    | 10   |
| Atlanta GA                          | 44   | 45                               | 49   | 13   | 31    | 11   |
| San Francisco-Oakland CA            | 49   | 50                               | 54   | 20   | 29    | 14   |
| Miami FL                            | 39   | 35                               | 33   | 10   | 29    | 14   |
| San Diego CA                        | 37   | 41                               | 33   | 8    | 29    | 14   |
| Philadelphia PA-NJ-DE-MD            | 39   | 38                               | 31   | 12   | 27    | 19   |
| Los Angeles-Long Beach-Santa Ana CA | 63   | 60                               | 76   | 39   | 24    | 25   |
| Detroit MI                          | 33   | 37                               | 36   | 14   | 19    | 37   |
| Phoenix AZ                          | 36   | 37                               | 32   | 24   | 12    | 78   |

### Table 7. Congestion Trends – Wasted Hours (Yearly Delay per Auto Commuter, 1982 to 2009)

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population.

Yearly Delay per Auto Commuter—Extra travel time during the year divided by the number of people who commute in private vehicles in the urban area.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

| Urban Area                  | Y    | early Hours of De | elay per Auto Con | nmuter |       | m Change<br>o 2009 |
|-----------------------------|------|-------------------|-------------------|--------|-------|--------------------|
|                             | 2009 | 2008              | 1999              | 1982   | Hours | Rank               |
| Large Average (31 areas)    | 31   | 32                | 32                | 9      | 22    |                    |
| Baltimore MD                | 50   | 48                | 37                | 11     | 39    | 4                  |
| Minneapolis-St. Paul MN     | 43   | 50                | 47                | 6      | 37    | 5                  |
| Denver-Aurora CO            | 47   | 48                | 45                | 12     | 35    | 6                  |
| Orlando FL                  | 41   | 37                | 46                | 11     | 30    | 12                 |
| Austin TX                   | 39   | 41                | 35                | 9      | 30    | 12                 |
| San Juan PR                 | 33   | 30                | 23                | 5      | 28    | 17                 |
| _as Vegas NV                | 32   | 27                | 24                | 5      | 27    | 19                 |
| Riverside-San Bernardino CA | 30   | 30                | 22                | 3      | 27    | 19                 |
| San Antonio TX              | 30   | 28                | 25                | 4      | 26    | 22                 |
| Portland OR-WA              | 36   | 36                | 37                | 11     | 25    | 23                 |
| Charlotte NC-SC             | 26   | 26                | 17                | 5      | 21    | 29                 |
| Fampa-St. Petersburg FL     | 34   | 35                | 27                | 14     | 20    | 32                 |
| St. Louis MO-IL             | 31   | 33                | 44                | 11     | 20    | 32                 |
| Raleigh-Durham NC           | 25   | 25                | 25                | 5      | 20    | 32                 |
| Memphis TN-MS-AR            | 24   | 21                | 22                | 5      | 19    | 37                 |
| Nashville-Davidson TN       | 35   | 33                | 34                | 17     | 18    | 42                 |
| San Jose CA                 | 35   | 38                | 49                | 17     | 18    | 42                 |
| /irginia Beach VA           | 32   | 35                | 43                | 14     | 18    | 42                 |
| Kansas City MO-KS           | 21   | 22                | 36                | 4      | 17    | 46                 |
| Providence RI-MA            | 19   | 20                | 18                | 2      | 17    | 46                 |
| Jacksonville FL             | 26   | 28                | 26                | 10     | 16    | 53                 |
| Milwaukee WI                | 25   | 27                | 32                | 9      | 16    | 53                 |
| Cleveland OH                | 19   | 20                | 20                | 3      | 16    | 53                 |
| Pittsburgh PA               | 33   | 31                | 37                | 18     | 15    | 59                 |
| ndianapolis IN              | 25   | 25                | 30                | 10     | 15    | 59                 |
| Sacramento CA               | 24   | 24                | 26                | 9      | 15    | 59                 |
| Cincinnati OH-KY            | 19   | 21                | 27                | 4      | 15    | 59                 |
| Columbus OH                 | 17   | 19                | 16                | 2      | 15    | 59                 |
| New Orleans LA              | 31   | 28                | 26                | 17     | 14    | 70                 |
| _ouisville KY-IN            | 22   | 21                | 25                | 9      | 13    | 73                 |
| Buffalo NY                  | 17   | 16                | 14                | 4      | 13    | 73                 |

#### Table 7. Congestion Trends – Wasted Hours (Yearly Delay per Auto Commuter, 1982 to 2009), Continued

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population. Small Urban Areas—less than 500,000 population.

Large Urban Areas—over 1 million and less than 3 million population.

Yearly Delay per Auto Commuter-Extra travel time during the year divided by the number of people who commute in private vehicles in the urban area.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

| Urban Area                           | Y    | early Hours of De | muter | Long-Term Change<br>1982 to 2009 |       |      |
|--------------------------------------|------|-------------------|-------|----------------------------------|-------|------|
|                                      | 2009 | 2008              | 1999  | 1982                             | Hours | Rank |
| Medium Average (33 areas)            | 22   | 21                | 21    | 7                                | 15    |      |
| Baton Rouge LA                       | 37   | 37                | 31    | 9                                | 28    | 17   |
| Colorado Springs CO                  | 31   | 31                | 39    | 6                                | 25    | 23   |
| Bridgeport-Stamford CT-NY            | 35   | 39                | 41    | 11                               | 24    | 25   |
| New Haven CT                         | 29   | 28                | 34    | 7                                | 22    | 27   |
| Salt Lake City UT                    | 28   | 24                | 24    | 6                                | 22    | 27   |
| Birmingham AL                        | 28   | 26                | 29    | 7                                | 21    | 29   |
| Oklahoma City OK                     | 25   | 26                | 25    | 5                                | 20    | 32   |
| Hartford CT                          | 24   | 24                | 25    | 5                                | 19    | 37   |
| El Paso TX-NM                        | 21   | 25                | 17    | 3                                | 18    | 42   |
| Honolulu HI                          | 31   | 31                | 27    | 14                               | 17    | 46   |
| Charleston-North Charleston SC       | 27   | 24                | 25    | 10                               | 17    | 46   |
| Albuquerque NM                       | 26   | 29                | 34    | 9                                | 17    | 46   |
| Omaha NE-IA                          | 20   | 21                | 14    | 3                                | 17    | 46   |
| Oxnard-Ventura CA                    | 19   | 18                | 15    | 2                                | 17    | 46   |
| Allentown-Bethlehem PA-NJ            | 22   | 22                | 23    | 7                                | 15    | 59   |
| Grand Rapids MI                      | 19   | 17                | 19    | 4                                | 15    | 59   |
| Richmond VA                          | 19   | 16                | 15    | 4                                | 15    | 59   |
| Albany-Schenectady NY                | 18   | 17                | 13    | 3                                | 15    | 59   |
| Wichita KS                           | 20   | 20                | 19    | 6                                | 14    | 70   |
| Tulsa OK                             | 18   | 16                | 14    | 4                                | 14    | 70   |
| Akron OH                             | 16   | 16                | 23    | 3                                | 13    | 73   |
| Tucson AZ                            | 23   | 21                | 17    | 11                               | 12    | 78   |
| Springfield MA-CT                    | 19   | 17                | 18    | 9                                | 10    | 83   |
| Toledo OH-MI                         | 12   | 10                | 18    | 2                                | 10    | 83   |
| Bakersfield CA                       | 11   | 9                 | 4     | 1                                | 10    | 83   |
| Rochester NY                         | 12   | 13                | 12    | 3                                | 9     | 87   |
| Sarasota-Bradenton FL                | 17   | 13                | 19    | 9                                | 8     | 89   |
| Dayton OH                            | 15   | 15                | 20    | 7                                | 8     | 89   |
| Fresno CA                            | 14   | 12                | 17    | 7                                | 7     | 91   |
| Poughkeepsie-Newburgh NY             | 11   | 9                 | 8     | 5                                | 6     | 93   |
| McAllen TX                           | 7    | 6                 | 5     | 1                                | 6     | 93   |
| Lancaster-Palmdale CA                | 18   | 16                | 11    | 19                               | -1    | 99   |
| Indio-Cathedral City-Palm Springs CA | 14   | 14                | 16    | 22                               | -8    | 101  |

#### Table 7. Congestion Trends – Wasted Hours (Yearly Delay per Auto Commuter, 1982 to 2009). Continued

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population. Yearly Delay per Auto Commuter-Extra travel time during the year divided by the number of people who commute in private vehicles in the urban area.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6th and 12th. The actual measure values should also be examined.

Also note: The best congestion comparisons use multi-year trends and are made between similar urban areas.

46

| Urban Area               | Y    | Yearly Hours of Delay per Auto Commuter |      |      |       |      |  |
|--------------------------|------|-----------------------------------------|------|------|-------|------|--|
|                          | 2009 | 2008                                    | 1999 | 1982 | Hours | Rank |  |
| Small Average (22 areas) | 18   | 18                                      | 17   | 5    | 13    |      |  |
| Columbia SC              | 25   | 24                                      | 15   | 4    | 21    | 29   |  |
| Salem OR                 | 24   | 22                                      | 28   | 4    | 20    | 32   |  |
| Little Rock AR           | 24   | 22                                      | 19   | 5    | 19    | 37   |  |
| Boise ID                 | 21   | 18                                      | 19   | 2    | 19    | 37   |  |
| Beaumont TX              | 21   | 23                                      | 16   | 5    | 16    | 53   |  |
| Jackson MS               | 19   | 19                                      | 12   | 3    | 16    | 53   |  |
| Pensacola FL-AL          | 19   | 18                                      | 15   | 3    | 16    | 53   |  |
| Cape Coral FL            | 23   | 23                                      | 24   | 8    | 15    | 59   |  |
| Knoxville TN             | 21   | 22                                      | 28   | 6    | 15    | 59   |  |
| Worcester MA             | 20   | 21                                      | 21   | 7    | 13    | 73   |  |
| Brownsville TX           | 14   | 13                                      | 6    | 1    | 13    | 73   |  |
| Winston-Salem NC         | 16   | 15                                      | 13   | 4    | 12    | 78   |  |
| Greensboro NC            | 15   | 14                                      | 23   | 6    | 10    | 83   |  |
| Laredo TX                | 12   | 4                                       | 1    | 0    | 12    | 78   |  |
| Spokane WA               | 16   | 18                                      | 23   | 6    | 10    | 83   |  |
| Provo UT                 | 14   | 13                                      | 11   | 5    | 9     | 87   |  |
| Stockton CA              | 9    | 9                                       | 7    | 2    | 7     | 91   |  |
| Boulder CO               | 15   | 22                                      | 27   | 9    | 6     | 93   |  |
| Madison WI               | 11   | 9                                       | 6    | 5    | 6     | 93   |  |
| Corpus Christi TX        | 10   | 10                                      | 9    | 5    | 5     | 97   |  |
| Eugene OR                | 9    | 10                                      | 12   | 5    | 4     | 98   |  |
| Anchorage AK             | 14   | 16                                      | 20   | 16   | -2    | 100  |  |
| 101 Area Average         | 39   | 39                                      | 39   | 14   | 25    |      |  |
| Remaining Area Average   | 18   | 18                                      | 19   | 10   | 8     |      |  |
| All 439 Area Average     | 34   | 34                                      | 35   | 14   | 20    |      |  |

#### Table 7. Congestion Trends – Wasted Hours (Yearly Delay per Auto Commuter, 1982 to 2009), Continued

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population.

Yearly Delay per Auto Commuter-Extra travel time during the year divided by the number of people who commute in private vehicles in the urban area.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

| Urban Area                          | Travel Time Index |      |      |      |        | ge in Peak-<br>ne Penalty<br>o 2009 |
|-------------------------------------|-------------------|------|------|------|--------|-------------------------------------|
|                                     | 2009              | 2008 | 1999 | 1982 | Points | Rank                                |
| Very Large Average (15 areas)       | 1.26              | 1.26 | 1.27 | 1.12 | 14     |                                     |
| Washington DC-VA-MD                 | 1.30              | 1.29 | 1.31 | 1.11 | 19     | 3                                   |
| Chicago IL-IN                       | 1.25              | 1.26 | 1.21 | 1.08 | 17     | 6                                   |
| Dallas-Fort Worth-Arlington TX      | 1.22              | 1.23 | 1.19 | 1.05 | 17     | 6                                   |
| Los Angeles-Long Beach-Santa Ana CA | 1.38              | 1.35 | 1.39 | 1.21 | 17     | 6                                   |
| New York-Newark NY-NJ-CT            | 1.27              | 1.27 | 1.28 | 1.10 | 17     | 6                                   |
| Seattle WA                          | 1.24              | 1.26 | 1.34 | 1.09 | 15     | 13                                  |
| Atlanta GA                          | 1.22              | 1.23 | 1.23 | 1.08 | 14     | 16                                  |
| Miami FL                            | 1.23              | 1.26 | 1.24 | 1.09 | 14     | 16                                  |
| San Diego CA                        | 1.18              | 1.20 | 1.19 | 1.04 | 14     | 16                                  |
| San Francisco-Oakland CA            | 1.27              | 1.28 | 1.30 | 1.13 | 14     | 16                                  |
| Boston MA-NH-RI                     | 1.20              | 1.21 | 1.25 | 1.09 | 11     | 26                                  |
| Philadelphia PA-NJ-DE-MD            | 1.19              | 1.19 | 1.18 | 1.09 | 10     | 32                                  |
| Phoenix AZ                          | 1.20              | 1.17 | 1.17 | 1.10 | 10     | 32                                  |
| Houston TX                          | 1.25              | 1.28 | 1.25 | 1.18 | 7      | 49                                  |
| Detroit MI                          | 1.15              | 1.18 | 1.21 | 1.09 | 6      | 58                                  |

#### Table 8. Congestion Trends – Wasted Time (Travel Time Index, 1982 to 2009)

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population. Small Urban Areas—less than 500,000 population.

Large Urban Areas—over 1 million and less than 3 million population.

Travel Time Index—The ratio of travel time in the peak period to the travel time at free-flow conditions. A value of 1.30 indicates a 20-minute free-flow trip takes 26 minutes in the peak period.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

| Urban Area                  |      | Travel Time Index |      |      |        |      |
|-----------------------------|------|-------------------|------|------|--------|------|
|                             | 2009 | 2008              | 1999 | 1982 | Points | Rank |
| Large Average (31 areas)    | 1.17 | 1.17              | 1.19 | 1.07 | 10     |      |
| Austin TX                   | 1.28 | 1.27              | 1.23 | 1.08 | 20     | 1    |
| Las Vegas NV                | 1.26 | 1.27              | 1.24 | 1.06 | 20     | 1    |
| Portland OR-WA              | 1.23 | 1.23              | 1.25 | 1.06 | 17     | 6    |
| San Juan PR                 | 1.25 | 1.22              | 1.19 | 1.07 | 18     | 4    |
| Minneapolis-St. Paul MN     | 1.21 | 1.24              | 1.30 | 1.05 | 16     | 12   |
| Denver-Aurora CO            | 1.22 | 1.21              | 1.25 | 1.07 | 15     | 13   |
| Riverside-San Bernardino CA | 1.16 | 1.16              | 1.12 | 1.01 | 15     | 13   |
| Orlando FL                  | 1.20 | 1.19              | 1.23 | 1.07 | 13     | 20   |
| Sacramento CA               | 1.18 | 1.19              | 1.18 | 1.05 | 13     | 20   |
| San Antonio TX              | 1.16 | 1.16              | 1.16 | 1.03 | 13     | 20   |
| Baltimore MD                | 1.17 | 1.16              | 1.13 | 1.05 | 12     | 23   |
| Indianapolis IN             | 1.18 | 1.18              | 1.15 | 1.06 | 12     | 23   |
| Charlotte NC-SC             | 1.17 | 1.19              | 1.16 | 1.06 | 11     | 26   |
| Providence RI-MA            | 1.14 | 1.15              | 1.15 | 1.03 | 11     | 26   |
| San Jose CA                 | 1.23 | 1.26              | 1.26 | 1.12 | 11     | 26   |
| Milwaukee WI                | 1.16 | 1.17              | 1.18 | 1.06 | 10     | 32   |
| Virginia Beach VA           | 1.19 | 1.19              | 1.24 | 1.09 | 10     | 32   |
| Cincinnati OH-KY-IN         | 1.12 | 1.13              | 1.14 | 1.03 | 9      | 38   |
| Columbus OH                 | 1.11 | 1.08              | 1.09 | 1.02 | 9      | 38   |
| Raleigh-Durham NC           | 1.13 | 1.13              | 1.12 | 1.04 | 9      | 38   |
| Memphis TN-MS-AR            | 1.13 | 1.13              | 1.16 | 1.05 | 8      | 43   |
| Cleveland OH                | 1.10 | 1.09              | 1.16 | 1.03 | 7      | 49   |
| Buffalo NY                  | 1.10 | 1.09              | 1.09 | 1.04 | 6      | 58   |
| Jacksonville FL             | 1.12 | 1.13              | 1.13 | 1.06 | 6      | 58   |
| Kansas City MO-KS           | 1.10 | 1.11              | 1.19 | 1.04 | 6      | 58   |
| Louisville KY-IN            | 1.10 | 1.08              | 1.11 | 1.06 | 4      | 72   |
| Nashville-Davidson TN       | 1.15 | 1.14              | 1.17 | 1.11 | 4      | 72   |
| St. Louis MO-IL             | 1.12 | 1.12              | 1.21 | 1.08 | 4      | 72   |
| Tampa-St. Petersburg FL     | 1.16 | 1.16              | 1.16 | 1.13 | 3      | 89   |
| Pittsburgh PA               | 1.17 | 1.20              | 1.23 | 1.15 | 2      | 93   |
| New Orleans LA              | 1.15 | 1.18              | 1.20 | 1.14 | 1      | 97   |

#### Table 8. Congestion Trends – Wasted Time (Travel Time Index, 1982 to 2009), Continued

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population.

Travel Time Index—The ratio of travel time in the peak period to the travel time at free-flow conditions. A value of 1.30 indicates a 20-minute free-flow trip takes 26 minutes in the peak period. Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

| Urban Area                           |      | Travel Time Index |      |      |        |      |
|--------------------------------------|------|-------------------|------|------|--------|------|
|                                      | 2009 | 2008              | 1999 | 1982 | Points | Rank |
| Medium Average (33 areas)            | 1.11 | 1.10              | 1.11 | 1.04 | 7      |      |
| Bridgeport-Stamford CT-NY            | 1.25 | 1.23              | 1.23 | 1.07 | 18     | 4    |
| Baton Rouge LA                       | 1.24 | 1.23              | 1.20 | 1.07 | 17     | 6    |
| El Paso TX-NM                        | 1.15 | 1.15              | 1.14 | 1.03 | 12     | 23   |
| New Haven CT                         | 1.15 | 1.13              | 1.15 | 1.04 | 11     | 26   |
| Oxnard-Ventura CA                    | 1.12 | 1.11              | 1.08 | 1.01 | 11     | 26   |
| Birmingham AL                        | 1.14 | 1.14              | 1.12 | 1.04 | 10     | 32   |
| Colorado Springs CO                  | 1.12 | 1.14              | 1.16 | 1.03 | 9      | 38   |
| Honolulu HI                          | 1.18 | 1.19              | 1.15 | 1.09 | 9      | 38   |
| Albuquerque NM                       | 1.13 | 1.15              | 1.19 | 1.05 | 8      | 43   |
| Hartford CT                          | 1.13 | 1.15              | 1.17 | 1.05 | 8      | 43   |
| McAllen TX                           | 1.09 | 1.07              | 1.06 | 1.01 | 8      | 43   |
| Albany-Schenectady NY                | 1.10 | 1.09              | 1.06 | 1.03 | 7      | 49   |
| Bakersfield CA                       | 1.08 | 1.07              | 1.04 | 1.01 | 7      | 49   |
| Indio-Cathedral City-Palm Springs CA | 1.13 | 1.09              | 1.09 | 1.06 | 7      | 49   |
| Oklahoma City OK                     | 1.09 | 1.09              | 1.08 | 1.02 | 7      | 49   |
| Salt Lake City UT                    | 1.12 | 1.11              | 1.17 | 1.05 | 7      | 49   |
| Charleston-North Charleston SC       | 1.15 | 1.15              | 1.16 | 1.09 | 6      | 58   |
| Omaha NE-IA                          | 1.08 | 1.11              | 1.08 | 1.02 | 6      | 58   |
| Tulsa OK                             | 1.07 | 1.05              | 1.06 | 1.02 | 5      | 66   |
| Wichita KS                           | 1.08 | 1.06              | 1.06 | 1.03 | 5      | 66   |
| Allentown-Bethlehem PA-NJ            | 1.08 | 1.08              | 1.08 | 1.04 | 4      | 72   |
| Fresno CA                            | 1.07 | 1.06              | 1.09 | 1.03 | 4      | 72   |
| Grand Rapids MI                      | 1.06 | 1.05              | 1.06 | 1.02 | 4      | 72   |
| Lancaster-Palmdale CA                | 1.11 | 1.06              | 1.07 | 1.07 | 4      | 72   |
| Rochester NY                         | 1.07 | 1.07              | 1.06 | 1.03 | 4      | 72   |
| Sarasota-Bradenton FL                | 1.10 | 1.09              | 1.11 | 1.06 | 4      | 72   |
| Springfield MA-CT                    | 1.09 | 1.07              | 1.09 | 1.05 | 4      | 72   |
| Toledo OH-MI                         | 1.05 | 1.04              | 1.08 | 1.01 | 4      | 72   |
| Tucson AZ                            | 1.11 | 1.12              | 1.11 | 1.07 | 4      | 72   |
| Akron OH                             | 1.05 | 1.05              | 1.09 | 1.02 | 3      | 89   |
| Richmond VA                          | 1.06 | 1.06              | 1.06 | 1.03 | 3      | 89   |
| Dayton OH                            | 1.06 | 1.06              | 1.09 | 1.05 | 1      | 97   |
| Poughkeepsie-Newburgh NY             | 1.04 | 1.04              | 1.04 | 1.03 | 1      | 97   |

#### Table 8. Congestion Trends - Wasted Time (Travel Time Index, 1982 to 2009), Continued

Very Large Urban Areas—over 3 million population. Large Urban Areas—over 1 million and less than 3 million population. Medium Urban Areas—over 500,000 and less than 1 million population. Small Urban Areas—less than 500,000 population.

Travel Time Index—The ratio of travel time in the peak period to the travel time at free-flow conditions. A value of 1.30 indicates a 20-minute free-flow trip takes 26 minutes in the peak period.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

| Urban Area               |      | Point Change in Peak-<br>Period Time Penalty<br>1982 to 2009 |      |      |        |      |
|--------------------------|------|--------------------------------------------------------------|------|------|--------|------|
|                          | 2009 | 2008                                                         | 1999 | 1982 | Points | Rank |
| Small Average (22 areas) | 1.08 | 1.08                                                         | 1.08 | 1.03 | 5      |      |
| Boise ID                 | 1.12 | 1.14                                                         | 1.11 | 1.02 | 10     | 32   |
| Boulder CO               | 1.13 | 1.12                                                         | 1.15 | 1.05 | 8      | 43   |
| Little Rock AR           | 1.10 | 1.08                                                         | 1.07 | 1.02 | 8      | 43   |
| Columbia SC              | 1.09 | 1.08                                                         | 1.06 | 1.02 | 7      | 49   |
| Salem OR                 | 1.10 | 1.10                                                         | 1.11 | 1.03 | 7      | 49   |
| Beaumont TX              | 1.08 | 1.08                                                         | 1.04 | 1.02 | 6      | 58   |
| Laredo TX                | 1.07 | 1.06                                                         | 1.05 | 1.01 | 6      | 58   |
| Cape Coral FL            | 1.12 | 1.13                                                         | 1.10 | 1.07 | 5      | 66   |
| Jackson MS               | 1.07 | 1.08                                                         | 1.06 | 1.02 | 5      | 66   |
| Spokane WA               | 1.10 | 1.09                                                         | 1.14 | 1.05 | 5      | 66   |
| Winston-Salem NC         | 1.06 | 1.06                                                         | 1.05 | 1.01 | 5      | 66   |
| Corpus Christi TX        | 1.07 | 1.06                                                         | 1.06 | 1.03 | 4      | 72   |
| Greensboro NC            | 1.05 | 1.05                                                         | 1.08 | 1.01 | 4      | 72   |
| Pensacola FL-AL          | 1.07 | 1.08                                                         | 1.09 | 1.03 | 4      | 72   |
| Provo UT                 | 1.06 | 1.03                                                         | 1.04 | 1.02 | 4      | 72   |
| Worcester MA             | 1.07 | 1.08                                                         | 1.09 | 1.03 | 4      | 72   |
| Madison WI               | 1.06 | 1.05                                                         | 1.05 | 1.03 | 3      | 89   |
| Brownsville TX           | 1.04 | 1.05                                                         | 1.06 | 1.02 | 2      | 93   |
| Eugene OR                | 1.07 | 1.08                                                         | 1.11 | 1.05 | 2      | 93   |
| Knoxville TN             | 1.06 | 1.07                                                         | 1.10 | 1.04 | 2      | 93   |
| Stockton CA              | 1.02 | 1.02                                                         | 1.03 | 1.01 | 1      | 97   |
| Anchorage AK             | 1.05 | 1.07                                                         | 1.05 | 1.05 | 0      | 101  |
| 101 Area Average         | 1.20 | 1.20                                                         | 1.22 | 1.09 | 11     |      |
| Remaining Areas          | 1.09 | 1.09                                                         | 1.10 | 1.04 | 5      |      |
| All 439 Urban Areas      | 1.20 | 1.20                                                         | 1.20 | 1.08 | 12     |      |

#### Table 8. Congestion Trends – Wasted Time (Travel Time Index, 1982 to 2009), Continued

Very Large Urban Areas—over 3 million population.

Medium Urban Areas—over 500,000 and less than 1 million population.

Large Urban Areas—over 1 million and less than 3 million population.

Small Urban Areas—less than 500,000 population.

Travel Time Index—The ratio of travel time in the peak period to the travel time at free-flow conditions. A value of 1.30 indicates a 20-minute free-flow trip takes 26 minutes in the peak period.

Note: Please do not place too much emphasis on small differences in the rankings. There may be little difference in congestion between areas ranked (for example) 6<sup>th</sup> and 12<sup>th</sup>. The actual measure values should also be examined.

|                              | Table 9. Urba              | an Area Demand and Road   | lway Growth Trends           |                              |
|------------------------------|----------------------------|---------------------------|------------------------------|------------------------------|
| Less Than 10% Faster (14)    | 10% to 30% Faster (47)     | 10% to 30% Faster (cont.) | More Than 30% Faster (40)    | More Than 30% Faster (cont.) |
| Anchorage AK                 | Allentown-Bethlehem PA-NJ  | Memphis TN-MS-AR          | Akron OH                     | New Haven CT                 |
| Boulder CO                   | Baton Rouge LA             | Milwaukee WI              | Albany-Schenectady NY        | New York-Newark NY-NJ-CT     |
| Cleveland OH                 | Beaumont TX                | Nashville-Davidson TN     | Albuquerque NM               | Omaha NE-IA                  |
| Dayton OH                    | Boston MA-NH-RI            | Oklahoma City OK          | Atlanta GA                   | Orlando FL                   |
| Greensboro NC                | Brownsville TX             | Pensacola FL-AL           | Austin TX                    | Oxnard-Ventura CA            |
| Indio-Cath City-P Springs CA | Buffalo NY                 | Philadelphia PA-NJ-DE-MD  | Bakersfield CA               | Providence RI-MA             |
| Lancaster-Palmdale CA        | Cape Coral FL              | Phoenix AZ                | Baltimore MD                 | Raleigh-Durham NC            |
| Madison WI                   | Charleston-N Charleston SC | Portland OR-WA            | Birmingham AL                | Riverside-S Bernardino CA    |
| New Orleans LA               | Charlotte NC-SC            | Richmond VA               | Boise ID                     | Sacramento CA                |
| Pittsburgh PA                | Corpus Christi TX          | Rochester NY              | Bridgeport-Stamford CT-NY    | San Antonio TX               |
| Poughkeepsie-Newburgh NY     | Denver-Aurora CO           | Salem OR                  | Chicago IL-IN                | San Diego CA                 |
| Provo UT                     | Detroit MI                 | Salt Lake City UT         | Cincinnati OH-KY-IN          | San Francisco-Oakland CA     |
| St. Louis MO-IL              | El Paso TX-NM              | San Jose CA               | Colorado Springs CO          | San Juan PR                  |
| Wichita KS                   | Eugene OR                  | Seattle WA                | Columbia SC                  | Sarasota-Bradenton FL        |
|                              | Fresno CA                  | Spokane WA                | Columbus OH                  | Stockton CA                  |
|                              | Grand Rapids MI            | Springfield MA-CT         | Dallas-Ft Worth-Arlington TX | Washington DC-VA-MD          |
|                              | Honolulu HI                | Tampa-St. Petersburg FL   | Hartford CT                  | -                            |
|                              | Houston TX                 | Toledo OH-MI              | Jacksonville FL              |                              |
|                              | Indianapolis IN            | Tucson AZ                 | Laredo TX                    |                              |
|                              | Jackson MS                 | Tulsa OK                  | Las Vegas NV                 |                              |
|                              | Kansas City MO-KS          | Virginia Beach VA         | Little Rock AR               |                              |
|                              | Knoxville TN               | Winston-Salem NC          | Los Angeles-L Bch-S Ana CA   |                              |
|                              | Louisville KY-IN           | Worcester MA              | Miami FL                     |                              |
|                              | McAllen TX                 |                           | Minneapolis-St. Paul MN      |                              |
|                              |                            |                           |                              |                              |

rea Domand and Poadway Growth Trands Table ^ --- -

Note: See Exhibit 12 for comparison of growth in demand, road supply and congestion.

## References

- 1 *National Average Speed Database*, 2007, 2008 and 2009. INRIX. Bellevue, WA. <u>www.inrix.com</u>
- 2 *Highway Performance Monitoring System*. 1982 to 2008 Data. Federal Highway Administration. Washington D.C. November 2009.
- 3 *Time Management Company Calculates Time You Spend Online…* Techuncover. June 4, 2010. <u>http://techuncover.com/?tag=amazon</u>
- 4 *National Transit Database*. Federal Transit Administration. 2008. Available: <u>http://www.ntdprogram.gov/ntdprogram/</u>
- 5 *ITS Deployment Statistics Database*. U.S. Department of Transportation. 2008. Available: <u>http://www.itsdeployment.its.dot.gov/</u>
- 6 Freight Analysis Framework (FAF) Version 2.2, User Guide Commodity Origin-Destination Database 2002 to 2035. Federal Highway Administration. Washington D.C. November 2006.
- 7 *Urban Mobility Report Methodology*. Prepared by Texas Transportation Institute For University Transportation Center for Mobility, College Station, Texas. 2009. Available: <u>http://mobility.tamu.edu/ums/report/methodology.stm</u>
- 8 An Early Look at the 2010 Urban Mobility Report: "Change" is Improving the Information. Prepared by Texas Transportation Institute For University Transportation Center for Mobility, College Station, TX. September 2010. <u>http://mobility.tamu.edu/ums/resources/umr2010\_preview.pdf</u>
- 9 Developing a Total Travel Time Performance Measure: A Concept Paper. Prepared by Texas Transportation Institute For Mobility Measurement in Urban Transportation Pooled Fund Study. College Station, TX. August 2010. <u>http://mobility.tamu.edu/resources/ttt\_measure\_2010.pdf</u>
- 10 Incorporating Sustainability Factors Into The Urban Mobility Report: A Draft Concept Paper. Prepared by Texas Transportation Institute For Mobility Measurement in Urban Transportation Pooled Fund Study. College Station, TX. August 2010. <u>http://mobility.tamu.edu/resources/sustainability\_factors.pdf</u>
- 11 Development of Diurnal Traffic Distribution and Daily, Peak and Off-Peak Vehicle Speed Estimation Procedures for Air Quality Planning. Final Report, Work Order B-94-06, Prepared for Federal Highway Administration, April 1996.

# 2010 URBAN MOBILITY REPORT

David Schrank • Tim Lomax • Shawn Turner Texas Transportation Institute The Texas A&M University System http://mobility.tamu.edu







